scispace - formally typeset
Journal ArticleDOI

Study on three-dimensional fracture network connectivity path of rock mass and seepage characteristics based on equivalent pipe network

TLDR
In this article, an approach using MATLAB cell array instead of traditional adjacency matrix to search and store fracture network connectivity paths was presented. But the results of this approach are limited.
Abstract
Nuclear waste repositories have extremely stringent requirements for geological environment. However, natural fractures in rock mass can be potential channels for nuclide migration, therefore, the influence of fractures on the permeability of rock mass must be assessed. In this paper, a well research was conducted on well-exposed granite outcrops in the Xinchang site (the Chinese high-level radioactive waste repository). The high-precision three-dimensional model of a typical outcrop is built to obtain fracture information combined with field measurement, and then the three-dimensional fracture network model is generated using the relevant parameters by Monte Carlo method. To obtain more comprehensive fracture connectivity while avoiding the traditional method of searching the connectivity path in the complicated 3D fracture model taking up a lot of storage space and costing a lot of time, this paper presents an approach using MATLAB cell array instead of traditional adjacency matrix to search and store fracture network connectivity paths. In DFN model, the fracture disc with certain thickness is equivalent to three-dimensional pipe network model (EPNM) with variable diameter, and the equivalent path permeability coefficient (EPC) is proposed to objectively study the permeability characteristics of the seepage path in fractured rock mass based on that. Especially noteworthy is that some fractures in a certain strike range belong to open type, while those in another range belong to cemented closed fractures, when fresh fractures were exposed by cutting off the surface rock to a certain depth. The calculation of EPC under different conditions shows that the order of magnitude of EPC mean value is 1e−7m/s and 1e−3m/s, respectively, when fractures are cemented and not partly. On this basis, the size of the representative elementary volume (REV) of the fractured rock mass in the study area is determined to be about 25 m. By rotating the matrix in model, the spatial permeability tensor of the region (including permeability principal value and main direction) is obtained, which is within the range of borehole data. The predicted results may provide some reference for the related projects in the future.

read more

Citations
More filters

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE - eScholarship

Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.
Journal ArticleDOI

Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China

TL;DR: A high precision three-dimensional point cloud model of an outcrop with real geographic information is established based on close-range photogrammetry technology and could provide an alternative and practical approach for low-cost and accurate acquisition of discontinuity parameters, and thus, to study the properties of fractured rock mass effectively.
Journal ArticleDOI

A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob

TL;DR: In this paper, the authors developed a fully coupled model capable of simulating spontaneous coal combustion and carbon monoxide (CO) release together with methane (CH4) desorption rates, concentration distributions and migration.
Journal ArticleDOI

Experimental and numerical investigation on the effects of bedding plane properties on the mechanical and acoustic emission characteristics of sandy mudstone

TL;DR: In this article, the effects of bedding plane properties on the strength, fracture and acoustic emission (AE) characteristics of rock, Brazilian tests of sandy mudstone with different angles between the Bedding plane inclination and loading direction (the Bedding Plane-loading angle) were first conducted.
Journal ArticleDOI

Groundwater fluoride chemistry and health risk assessment of multi-aquifers in Jilin Qianan, Northeastern China.

TL;DR: In this paper, the authors evaluated groundwater fluoride hydrochemistry in a multi-aquifer system in Jilin Qianan to determine the non-carcinogenic health risk liable from exploiting the respective aquifers.
References
More filters
Journal ArticleDOI

The Behavior of Naturally Fractured Reservoirs

TL;DR: Enginsera et al. as discussed by the authors proposed an idealized model for the purpose of studying the characteristic behavior of a permeable medium which contains regions which contribute significantly to the pore volume of the system but contribute negligibly to the flow capacity.
Book

Statistical Analysis of Circular Data

TL;DR: This book presents a meta-modelling framework for analysing two or more samples of unimodal data from von Mises distributions, and some modern Statistical Techniques for Testing and Estimation used in this study.
Journal ArticleDOI

Validity of Cubic Law for fluid flow in a deformable rock fracture

TL;DR: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm.

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE - eScholarship

Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.
Related Papers (5)