scispace - formally typeset
Open accessJournalISSN: 0147-6513

Ecotoxicology and Environmental Safety

About: Ecotoxicology and Environmental Safety is an academic journal. The journal publishes majorly in the area(s): Population & Oxidative stress. It has an ISSN identifier of 0147-6513. It is also open access. Over the lifetime, 11946 publication(s) have been published receiving 328045 citation(s).

...read more

Topics: Population, Oxidative stress, Cadmium ...read more
Papers
  More

Journal ArticleDOI: 10.1016/J.ECOENV.2004.06.010
Abstract: Plants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement. Many salt-tolerant species accumulate methylated metabolites, which play crucial dual roles as osmoprotectants and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. In this paper, plant responses to salinity stress are reviewed with emphasis on physiological, biochemical, and molecular mechanisms of salt tolerance. This review may help in interdisciplinary studies to assess the ecological significance of salt stress.

...read more

Topics: Ion homeostasis (55%), Osmoprotectant (50%)

3,120 Citations


Journal ArticleDOI: 10.1016/J.ECOENV.2005.03.013
Abstract: The potential of oxygen free radicals and other reactive oxygen species (ROS) to damage tissues and cellular components, called oxidative stress, in biological systems has become a topic of significant interest for environmental toxicology studies. The balance between prooxidant endogenous and exogenous factors (i.e., environmental pollutants) and antioxidant defenses (enzymatic and nonenzymatic) in biological systems can be used to assess toxic effects under stressful environmental conditions, especially oxidative damage induced by different classes of chemical pollutants. The role of these antioxidant systems and their sensitivity can be of great importance in environmental toxicology studies. In the past decade, numerous studies on the effects of oxidative stress caused by some environmental pollutants in terrestrial and aquatic species were published. Increased numbers of agricultural and industrial chemicals are entering the aquatic environment and being taken up into tissues of aquatic organisms. Transition metals, polycyclic aromatic hydrocarbons, organochlorine and organophosphate pesticides, polychlorinated biphenyls, dioxins, and other xenobiotics play important roles in the mechanistic aspects of oxidative damage. Such a diverse array of pollutants stimulate a variety of toxicity mechanisms, such as oxidative damage to membrane lipids, DNA, and proteins and changes to antioxidant enzymes. Although there are considerable gaps in our knowledge of cellular damage, response mechanisms, repair processes, and disease etiology in biological systems, free radical reactions and the production of toxic ROS are known to be responsible for a variety of oxidative damages leading to adverse health effects and diseases. In the past decade, mammalian species were used as models for the study of molecular biomarkers of oxidative stress caused by environmental pollutants to elucidate the mechanisms underlying cellular oxidative damage and to study the adverse effects of some environmental pollutants with oxidative potential in chronic exposure and/or sublethal concentrations. This review summarizes current knowledge and advances in the understanding of such oxidative processes in biological systems. This knowledge is extended to specific applications in aquatic organisms because of their sensitivity to oxidative pollutants, their filtration capacity, and their potential for environmental toxicology studies.

...read more

1,374 Citations


Journal ArticleDOI: 10.1006/EESA.1999.1860
Abstract: Many microorganisms demonstrate resistance to metals in water, soil and industrial waste. Genes located on chromosomes, plasmids, or transposons encode specific resistance to a variety of metal ions. Some metals, such as cobalt, copper, nickel, serve as micronutrients and are used for redox processes, to stabilize molecules through electrostatic interactions, as components of various enzymes, and for regulation of osmotic pressure. Most metals are nonessential, have no nutrient value, and are potentially toxic to microorganisms. These toxic metals interact with essential cellular components through covalent and ionic bonding. At high levels, both essential and nonessential metals can damage cell membranes, alter enzyme specificity, disrupt cellular functions, and damage the structure of DNA. Microorganisms have adapted to the presence of both nutrient and nonessential metals by developing a variety of resistance mechanisms. Six metal resistance mechanisms exist: exclusion by permeability barrier, intra- and extra-cellular sequestration, active transport efflux pumps, enzymatic detoxification, and reduction in the sensitivity of cellular targets to metal ions. The understanding of how microorganisms resist metals can provide insight into strategies for their detoxification or removal from the environment.

...read more

1,078 Citations


Journal ArticleDOI: 10.1016/J.ECOENV.2005.11.007
Abstract: Heavy metal contamination of soil resulting from wastewater irrigation is a cause of serious concern due to the potential health impacts of consuming contaminated produce. In this study an assessment is made of the impact of wastewater irrigation on heavy metal contamination of Beta vulgaris (palak); this is a highly nutritious leafy vegetable that is widely cultivated and consumed in urban India, particularly by the poor. A field study was conducted at three major sites that were irrigated by either treated or untreated wastewater in the suburban areas of Varanasi, India according to normal practice. Samples of irrigation water, soil, and the edible portion of the palak (Beta vulgaris L. var All green H1) were collected monthly during the summer and winter seasons and were analyzed for Cd, Cu, Zn, Pb, Cr, Mn, and Ni. Heavy metals in irrigation water were below the internationally recommended (WHO) maximum permissible limits set for agricultural use for all heavy metals except Cd at all the sites. Similarly, the mean heavy metal concentrations in soil were below the Indian standards for all heavy metals, but the maximum value of Cd recorded during January was higher than the standard. However, in the edible portion of B. vulgaris, the Cd concentration was higher than the permissible limits of the Indian standard during summer, whereas Pb and Ni concentrations were higher in both summer and winter seasons. Results of linear regression analysis computed to assess the relationship between individual heavy metal concentration in the vegetable samples and in soil showed that Zn in soil had a positive significant relationship with vegetable contamination during winter. Concentrations of Cd, Cu, and Mn in soil and plant showed significant positive relationships only during summer. Concentration of Cr and Pb during winter season and Zn and Ni during summer season showed significant negative relationships between soil and plant contamination. The study concludes that the use of treated and untreated wastewater for irrigation has increased the contamination of Cd, Pb, and Ni in edible portion of vegetables causing potential health risk in the long term from this practice. The study also points to the fact that adherence to standards for heavy metal contamination of soil and irrigation water does not ensure safe food.

...read more

Topics: Irrigation (53%), Soil water (51%)

813 Citations


Journal ArticleDOI: 10.1016/J.ECOENV.2017.11.034
Abstract: The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents – i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment.

...read more

Topics: Adsorption (55%)

702 Citations


Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20211,654
20201,317
20191,325
20181,196
2017573
2016459

Top Attributes

Show by:

Journal's top 5 most impactful authors

Amadeu M.V.M. Soares

36 papers, 1.5K citations

John P. Giesy

21 papers, 636 citations

Shafaqat Ali

21 papers, 1.8K citations

Willie J.G.M. Peijnenburg

15 papers, 1.2K citations

Cornelis A.M. van Gestel

12 papers, 394 citations

Network Information
Related Journals (5)
Ecotoxicology

2.9K papers, 87K citations

93% related
Chemosphere

36.4K papers, 1.2M citations

93% related
Environmental Science and Pollution Research

28K papers, 403.4K citations

92% related
Environmental Pollution

19.1K papers, 781.6K citations

92% related
Archives of Environmental Contamination and Toxicology

5.6K papers, 190K citations

91% related