scispace - formally typeset
Journal ArticleDOI

Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer Mechanisms

Yanzhen Fan, +2 more
- 03 Nov 2007 - 
- Vol. 41, Iss: 23, pp 8154-8158
Reads0
Chats0
TLDR
In this paper, the performance of cloth electrode assemblies (CEA) with bicarbonate buffer solutions was evaluated using a facilitated proton transfer mechanism for MFCs in the presence of pH buffers.
Abstract
Phosphate buffer solution has been commonly used in MFC studies to maintain a suitable pH for electricity-generating bacteria and/or to increase the solution conductivity. However, addition of a high concentration of phosphate buffer in MFCs could be expensive, especially for wastewater treatment. In this study, the performances of MFCs with cloth electrode assemblies (CEA) were evaluated using bicarbonate buffer solutions. A maximum power density of 1550 W/m3 (2770 mW/m2) was obtained at a current density of 0.99 mA/cm2 using a pH 9 bicarbonate buffer solution. Such a power density was 38.6% higher than that using a pH 7 phosphate buffer at the same concentration of 0.2 M. Based on the quantitative comparison of free proton transfer rates, diffusion rates of pH buffer species, and the current generated, a facilitated proton transfer mechanism was proposed for MFCs in the presence of the pH buffers. The excellent performance of MFCs using bicarbonate as pH buffer and proton carrier indicates that bicarbon...

read more

Citations
More filters
Journal ArticleDOI

Exoelectrogenic bacteria that power microbial fuel cells

TL;DR: This Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication, to understand bacterial versatility in mechanisms used for current generation.
Journal ArticleDOI

Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

TL;DR: In this paper, the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals are reviewed.
Journal ArticleDOI

Membrane-based processes for sustainable power generation using water

TL;DR: Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters, allowing both wastewater treatment and power production.
Journal ArticleDOI

Microbial fuel cells: From fundamentals to applications. A review

TL;DR: The development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described, introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells.
Journal ArticleDOI

Towards practical implementation of bioelectrochemical wastewater treatment.

TL;DR: These challenges are identified, an overview of their implications for the feasibility of bioelectrochemical wastewater treatment is provided and the opportunities for future BESs are explored.
References
More filters
Journal ArticleDOI

Microbial Fuel Cells: Methodology and Technology†

TL;DR: A review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results are provided.
Journal ArticleDOI

Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

TL;DR: This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Journal ArticleDOI

Electricity production by geobacter sulfurreducens attached to electrodes

TL;DR: The results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.
Journal ArticleDOI

Microbial fuel cells: novel biotechnology for energy generation

TL;DR: How bacteria use an anode as an electron acceptor and to what extent they generate electrical output is discussed and the MFC technology is evaluated relative to current alternatives for energy generation.
Journal ArticleDOI

Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.

TL;DR: An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2.
Related Papers (5)