scispace - formally typeset
Proceedings ArticleDOI

The Architectural Implications of Autonomous Driving: Constraints and Acceleration

Reads0
Chats0
TLDR
With accelerator-based designs, this work is able to build an end-to-end autonomous driving system that meets all the design constraints, and explore the trade-offs among performance, power and the higher accuracy enabled by higher resolution cameras.
Abstract
Autonomous driving systems have attracted a significant amount of interest recently, and many industry leaders, such as Google, Uber, Tesla, and Mobileye, have invested a large amount of capital and engineering power on developing such systems. Building autonomous driving systems is particularly challenging due to stringent performance requirements in terms of both making the safe operational decisions and finishing processing at real-time. Despite the recent advancements in technology, such systems are still largely under experimentation and architecting end-to-end autonomous driving systems remains an open research question. To investigate this question, we first present and formalize the design constraints for building an autonomous driving system in terms of performance, predictability, storage, thermal and power. We then build an end-to-end autonomous driving system using state-of-the-art award-winning algorithms to understand the design trade-offs for building such systems. In our real-system characterization, we identify three computational bottlenecks, which conventional multicore CPUs are incapable of processing under the identified design constraints. To meet these constraints, we accelerate these algorithms using three accelerator platforms including GPUs, FPGAs, and ASICs, which can reduce the tail latency of the system by 169x, 10x, and 93x respectively. With accelerator-based designs, we are able to build an end-to-end autonomous driving system that meets all the design constraints, and explore the trade-offs among performance, power and the higher accuracy enabled by higher resolution cameras.

read more

Citations
More filters
Journal ArticleDOI

Wireless Network Intelligence at the Edge

TL;DR: In this article, the key building blocks of edge ML, different neural network architectural splits and their inherent tradeoffs, as well as theoretical and technical enablers stemming from a wide range of mathematical disciplines are presented.
Posted Content

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

TL;DR: Eyeriss v2, a DNN accelerator architecture designed for running compact and sparse DNNs, is presented, which introduces a highly flexible on-chip network that can adapt to the different amounts of data reuse and bandwidth requirements of different data types, which improves the utilization of the computation resources.
Journal ArticleDOI

Toward an Intelligent Edge: Wireless Communication Meets Machine Learning

TL;DR: In this article, the authors advocate a new set of design guidelines for wireless communication in edge learning, collectively called learning-driven communication, and provide examples to demonstrate the effectiveness of these design guidelines.
Journal ArticleDOI

Edge Computing for Autonomous Driving: Opportunities and Challenges

TL;DR: In this paper, the authors review state-of-the-art approaches in these areas as well as explore potential solutions to address these challenges, including providing enough computing power, redundancy, and security so as to guarantee the safety of autonomous vehicles.
Posted Content

Wireless Network Intelligence at the Edge

TL;DR: In a first of its kind, this article explores the key building blocks of edge ML, different neural network architectural splits and their inherent tradeoffs, as well as theoretical and technical enablers stemming from a wide range of mathematical disciplines.
References
More filters
Posted Content

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe as discussed by the authors is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Proceedings ArticleDOI

Are we ready for autonomous driving? The KITTI vision benchmark suite

TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Proceedings ArticleDOI

YOLO9000: Better, Faster, Stronger

TL;DR: YOLO9000 as discussed by the authors is a state-of-the-art real-time object detection system that can detect over 9000 object categories in real time using a novel multi-scale training method, offering an easy tradeoff between speed and accuracy.
Posted Content

YOLO9000: Better, Faster, Stronger

TL;DR: YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories, is introduced and a method to jointly train on object detection and classification is proposed, both novel and drawn from prior work.
Journal ArticleDOI

ORB-SLAM: A Versatile and Accurate Monocular SLAM System

TL;DR: ORB-SLAM as discussed by the authors is a feature-based monocular SLAM system that operates in real time, in small and large indoor and outdoor environments, with a survival of the fittest strategy that selects the points and keyframes of the reconstruction.
Related Papers (5)