scispace - formally typeset
Open AccessJournal ArticleDOI

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

TLDR
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport.
Abstract
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Science Objectives and Rationale for the Radiation Belt Storm Probes Mission

TL;DR: The NASA Radiation Belt Storm Probes (RBSP) mission as discussed by the authors uses two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘).
Journal ArticleDOI

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

TL;DR: High-resolution electron observations obtained during the 9 October storm are reported and chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase, and detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt.
Journal ArticleDOI

Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes Mission

TL;DR: The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts as mentioned in this paper.
Journal ArticleDOI

Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes.

TL;DR: The expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum are described and described.
References
More filters
Journal ArticleDOI

Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters

TL;DR: In this paper, the sensitivity of the rate of energetic electron pitch angle scattering and precipitation loss in the Earth's magnetosphere due to Coulomb interactions with thermal plasma and resonant wave-particle interactions with plasmaspheric hiss, lightning-generated whistlers and VLF transmitter signals is computed for a realistic range of plasma and wave parameters.
Journal ArticleDOI

Kinetic model of the ring current-atmosphere interactions

TL;DR: In this article, a numerical model of the ring current-atmosphere coupling (RAM) was further developed in order to include wave-particle interaction processes, and the model calculates the time evolution of the phase space distribution function in the region from 2 RE to 6.5 RE, considering losses due to charge exchange, Coulomb collisions, and plasma wave scattering along ion drift paths.
Journal ArticleDOI

Simulations of phase space distributions of storm time proton ring current

TL;DR: In this article, the phase space densities of the storm-time proton ring current were modeled as a sequence of substorm-associated enhancements in the convection electric field.
Journal ArticleDOI

The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons

TL;DR: In this paper, a brief review of the role that chorus waves play in controlling the dynamics of the Earth's outer radiation belt is provided, with special emphasis on more recent results.
Journal ArticleDOI

Evolution of electron fluxes in the outer radiation belt computed with the VERB code

TL;DR: In this paper, three-dimensional simulations of the dynamics of outer radiation belt electrons with the recently developed Versatile Electron Radiation Belt (VERB) code are presented for an idealized storm with geomagnetic activity-dependent wave amplitudes that are parameterized as a function of the level of geOMagnetic activity.
Related Papers (5)