scispace - formally typeset
Open AccessJournal ArticleDOI

The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds

Reads0
Chats0
TLDR
In this paper, direct numerical computations of uniformly driven turbulence with the ZEUS astrophysical MHD code are used to derive the absolute value of energy dissipation as a function of the driving wavelength and amplitude.
Abstract
Molecular clouds have broad linewidths suggesting turbulent supersonic motions in the clouds. These motions are usually invoked to explain why molecular clouds take much longer than a free-fall time to form stars. It has classically been thought that supersonic hydrodynamical turbulence would dissipate its energy quickly, but that the introduction of strong magnetic fields could maintain these motions. In a previous paper it has been shown, however, that isothermal, compressible, MHD and hydrodynamical turbulence decay at virtually the same rate, requiring that constant driving occur to maintain the observed turbulence. In this paper direct numerical computations of uniformly driven turbulence with the ZEUS astrophysical MHD code are used to derive the absolute value of energy dissipation as a function of the driving wavelength and amplitude. The ratio of the formal decay time of turbulence E_{kin}/\dot{E}_{kin} to the free-fall time of the gas can then be derived as a function of the ratio of driving wavelength to Jeans wavelength and rms Mach number, and shown to be most likely far less than unity, again showing that turbulence in molecular clouds must be constantly and strongly driven. (abridged)

read more

Citations
More filters
Journal ArticleDOI

Theory of Star Formation

TL;DR: In this paper, an overall theoretical framework and the observations that motivate it are outlined, outlining the key dynamical processes involved in star formation, including turbulence, magnetic fields, and self-gravity.
Journal ArticleDOI

Interstellar Turbulence I: Observations and Processes

TL;DR: In this article, a two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics, including basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structu...
Journal ArticleDOI

Neutral Atomic Phases of the Interstellar Medium in the Galaxy

TL;DR: In this paper, the authors provided an analytic approximation for Pmin as a function of metallicity, far-ultraviolet radiation field, and the ionization rate of atomic hydrogen.

Control of Star Formation by Supersonic Turbulence

TL;DR: A review of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives, is given in this article.
Journal ArticleDOI

Density, velocity, and magnetic field structure in turbulent molecular cloud models

TL;DR: In this paper, the authors use 3D numerical magnetohydrodynamic simulations to follow the evolution of cold, turbulent, gaseous systems with parameters chosen to represent conditions in giant molecular clouds (GMCs).
References
More filters
Journal ArticleDOI

Instability, turbulence, and enhanced transport in accretion disks

TL;DR: In this paper, a summary of what is now known of disk turbulence and some knotty outstanding questions (e.g., what is the physics behind nonlinear field saturation?) for which we may soon begin to develop answers.
Journal ArticleDOI

Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection

TL;DR: In this paper, an approach to numerical convection is presented that exclusively yields upstream-centered schemes, which start from a meshwise approximation of the initial-value distribution by simple basic functions, e.g., Legendre polynomials.
Book

Turbulence in fluids

TL;DR: In this article, the transition from transition to Turbulence in fluid mechanics is described as follows: "Basic Fluid Dynamics, Transition to Turbence, Shear Flow Turbulence, Fourier Analysis of Homogeneous Turburbence, Isotropic Turbulences: Phenomenology and Simulations".
Journal ArticleDOI

Simulation of magnetohydrodynamic flows: A Constrained transport method

TL;DR: In this paper, a nouvelle technique numerique, appelee methode du transport contraint, is presented, for etudier l'evolution de l'equation d'induction en fonction du flux magnetique.
Related Papers (5)