scispace - formally typeset
Journal ArticleDOI

The near pressure field of co-axial subsonic jets

Charles E. Tinney, +1 more
- 25 Sep 2008 - 
- Vol. 611, pp 175-204
Reads0
Chats0
TLDR
In this paper, an analysis of the axial, temporal and azimuthal structure of the pressure field of a co-axial jet with and without serrations on the secondary nozzle lip is presented.
Abstract
Results are presented from pressure measurements performed in the irrotational near field of unbounded co-axial jets. Measurements were made for a variety of velocity and temperature ratios, and configurations both with and without serrations on the secondary nozzle lip. The principal objective of the study is to better understand the near pressure field of the jet, what it can tell us regarding the underlying turbulence structure, and in particular how it can be related to the source mechanisms of the flow.A preliminary analysis of the axial, temporal and azimuthal structure of the pressure field shows it to be highly organized, with axial spatial modes (obtained by proper orthogonal decomposition) which resemble Fourier modes. The effects of serrations on the pressure fluctuations comprise a global reduction in level, a change in the axial energy distribution, and a modification of the evolution of the characteristic time scales.A further analysis in frequency–wavenumber space is then performed, and a filtering operation is used to separate the convective and propagative footprints of the pressure field. This operation reveals two distinct signatures in the propagating component of the field: a low-frequency component which radiates at small angles to the flow axis and is characterized by extensive axial coherence, and a less-coherent high-frequency component which primarily radiates in sideline directions. The serrations are found to reduce the energy of the axially coherent propagating component, but its structure remains fundamentally unchanged; the high-frequency component is found to be enhanced. A further effect of the serrations involves a relative increase of the mean-square pressure level of the acoustic component – integrated over the measurement domain – with respect to the hydrodynamic component. The effect of increasing the velocity and temperature of the primary jet involves a relative increase in the acoustic component of the near field, while the hydrodynamic component remains relatively unchanged: this shows that the additional acoustic energy is generated by the mixing region which is produced by the interaction of the inner and the outer shear layers, whereas the hydrodynamic component of the near field is primarily driven by the outer shear layer.

read more

Citations
More filters
Book ChapterDOI

Hydrodynamic - Acoustic Filtering of a Supersonic Under-Expanded Jet

TL;DR: The main noise that is perceived inside the cabin of an airplane originates in the turbofan engines and their associated exhaust jets as discussed by the authors, due to flight conditions, a pressure difference appears at the exit of the secondary flow which engenders a series of expansion and compression waves known as shockcells.
Journal ArticleDOI

Statistical Analysis of the Pressure Field in the near Region of a M = 0.5 Circular Jet

TL;DR: In this article, a wavelet transform is used to identify ensemble averaged velocity traces of the noise sources in a turbulent jet at M = 0.5 and the velocity signatures are interpreted as induced by wavepackets, in the region close to the jet exit and ring vortices in the far region.
Journal ArticleDOI

Proper-Orthogonal-Decomposition-Based Reduced-Order Models for Characterizing Ship Airwake Interactions

TL;DR: In this article, a reduced-order model of the airwake produced by the flow over a simple frigate ship was developed using proper orthogonal decomposition (POD)-based methods.
Proceedings ArticleDOI

Large Eddy Simulation of Shock-Cell Noise From a Dual Stream Jet

TL;DR: In this paper, the authors presented the shockcell noise results obtained from a large eddy aeroacoustic simulation from a dual stream jet, and analyzed the aerodynamics and aero-acoustics of the flow.
References
More filters
Journal ArticleDOI

The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows

TL;DR: The Navier-Stokes equations are well-known to be a good model for turbulence as discussed by the authors, and the results of well over a century of increasingly sophisticated experiments are available at our disposal.
Journal ArticleDOI

The dynamics of coherent structures in the wall region of a turbulent boundary layer.

TL;DR: In this article, the wall region of a turbulent boundary layer is modelled by expanding the instantaneous field in so-called empirical eigenfunctions, as permitted by the proper orthogonal decomposition theorem.
Journal ArticleDOI

Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9

TL;DR: In this article, the mechanisms of sound generation in a Mach 0.9, Reynolds number 3600 turbulent jet are investigated by direct numerical simulation and the results show that the phase velocities of significant components range from approximately 5% to 50% of the ambient sound speed.
Proceedings ArticleDOI

On the Two Components of Turbulent Mixing Noise from Supersonic Jets

TL;DR: In this paper, two similarity spectra, one for the noise from the large turbulence structures/instability waves of the jet flow, the other for the fine-scale turbulence, are identified.
Related Papers (5)