# Showing papers in "Journal of Fluid Mechanics in 2008"

••

Max Planck Society

^{1}, Polish Academy of Sciences^{2}, University of Bedfordshire^{3}, Harvard University^{4}TL;DR: In this article, the authors describe the results of a numerical investigation of the dynamics of breakup of streams of immiscible fluids in the confined geometry of a microfluidic T-junction.

Abstract: We describe the results of a numerical investigation of the dynamics of breakup of streams of immiscible fluids in the confined geometry of a microfluidic T-junction. We identify three distinct regimes of formation of droplets: squeezing, dripping and jetting, providing a unifying picture of emulsification processes typical for microfluidic systems. The squeezing mechanism of breakup is particular to microfluidic systems, since the physical confinement of the fluids has pronounced effects on the interfacial dynamics. In this regime, the breakup process is driven chiefly by the buildup of pressure upstream of an emerging droplet and both the dynamics of breakup and the scaling of the sizes of droplets are influenced only very weakly by the value of the capillary number. The dripping regime, while apparently homologous to the unbounded case, is also significantly influenced by the constrained geometry; these effects modify the scaling law for the size of the droplets derived from the balance of interfacial and viscous stresses. Finally, the jetting regime sets in only at very high flow rates, or with low interfacial tension, i.e. higher values of the capillary number, similar to the unbounded case.

544 citations

••

TL;DR: In this article, four different approaches are used to determine experimentally the sources of jet mixing noise: spectral and directional information measured by a single microphone in the far field, fine-scale turbulence, large turbulence structures of the jet flow, and a mirror microphone is used to measure the noise source distribution along the lengths of high speed jets.

Abstract: The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.

441 citations

••

TL;DR: In this article, the authors used the flame describing function (FDF) to investigate the nonlinear stability of burners by associating the FDF with a frequency-domain analysis of the burner acoustics.

Abstract: Analysis of combustion instabilities relies in most cases on linear analysis but most observations of these processes are carried out in the nonlinear regime where the system oscillates at a limit cycle. The objective of this paper is to deal with these two manifestations of combustion instabilities in a unified framework. The flame is recognized as the main nonlinear element in the system and its response to perturbations is characterized in terms of generalized transfer functions which assume that the gain and phase depend on the amplitude level of the input. This 'describing function' framework implies that the fundamental frequency is predominant and that the higher harmonics generated in the nonlinear element are weak because the higher frequencies are filtered out by the other components of the system. Based on this idea, a methodology is proposed to investigate the nonlinear stability of burners by associating the flame describing function with a frequency-domain analysis of the burner acoustics. These elements yield a nonlinear dispersion relation which can be solved, yielding growth rates and eigenfrequencies, which depend on the amplitude level of perturbations impinging on the flame. This method is used to investigate the regimes of oscillation of a well-controlled experiment. The system includes a resonant upstream manifold formed by a duct having a continuously adjustable length and a combustion region comprising a large number of flames stabilized on a multipoint injection system. The growth rates and eigenfrequencies are determined for a wide range of duct lengths. For certain values of this parameter we find a positive growth rate for vanishingly small amplitude levels, indicating that the system is linearly unstable. The growth rate then changes as the amplitude is increased and eventually vanishes for a finite amplitude, indicating the existence of a limit cycle. For other values of the length, the growth rate is initially negative, becomes positive for a finite amplitude and drops to zero for a higher value. This indicates that the system is linearly stable but nonlinearly unstable. Using calculated growth rates it is possible to predict amplitudes of oscillation when the system operates on a limit cycle. Mode switching and instability triggering may also be anticipated by comparing the growth rate curves. Theoretical results are found to be in excellent agreement with measurements, indicating that the flame describing function (FDF) methodology constitutes a suitable framework for nonlinear instability analysis.

415 citations

••

TL;DR: In this paper, an incompressible turbulent pipe flow at bulk-velocity and pipe-diameter-based Reynolds number ReD=44000 was simulated with second-order finite-difference methods on 630 million grid points.

Abstract: Fully developed incompressible turbulent pipe flow at bulk-velocity- and pipe-diameter-based Reynolds number ReD=44000 was simulated with second-order finite-difference methods on 630 million grid points. The corresponding Karman number R+, based on pipe radius R, is 1142, and the computational domain length is 15R. The computed mean flow statistics agree well with Princeton Superpipe data at ReD=41727 and at ReD=74000. Second-order turbulence statistics show good agreement with experimental data at ReD=38000. Near the wall the gradient of with respect to ln(1−r)+ varies with radius except for a narrow region, 70 0.4. For 5300 0.4. A rationale based on the curvature of mean velocity gradient profile is proposed to understand the perplexing existence of logarithmic mean velocity profile in very-low-Reynolds-number pipe flows. Beyond ReD=44000, axial turbulence intensity varies linearly with radius within the range of 0.15 < 1−r < 0.7. Flow visualizations and two-point correlations reveal large-scale structures with comparable near-wall azimuthal dimensions at ReD=44000 and 5300 when measured in wall units. When normalized in outer units, streamwise coherence and azimuthal dimension of the large-scale structures in the pipe core away from the wall are also comparable at these two Reynolds numbers.

344 citations

••

TL;DR: In this paper, the authors present a direct numerical simulation of laminar separation bubbles on a NACA-0012 airfoil at Re-c = 5 x 10(4) and incidence 5 degrees.

Abstract: Direct numerical simulations (DNS) of laminar separation bubbles on a NACA-0012 airfoil at Re-c = 5 x 10(4) and incidence 5 degrees are presented. Initially volume forcing is introduced in order to promote transition to turbulence. After obtaining sufficient data from this forced case, the explicitly added disturbances are removed and the simulation run further. With no forcing the turbulence is observed to self-sustain, with increased turbulence intensity in the reattachment region. A comparison of the forced and unforced cases shows that the forcing improves the aerodynamic performance whilst requiring little energy input. Classical linear stability analysis is performed upon the time-averaged flow field; however no absolute instability is observed that could explain the presence of self-sustaining turbulence. Finally, a series of simplified DNS are presented that illustrate a three-dimensional absolute instability of the two-dimensional vortex shedding that occurs naturally. Three-dimensional perturbations are amplified in the braid region of developing vortices, and subsequently convected upstream by local regions of reverse flow, within which the upstream velocity magnitude greatly exceeds that of the time-average. The perturbations are convected into the braid region of the next developing vortex, where they are amplified further, hence the cycle repeats with increasing amplitude. The fact that this transition process is independent of upstream disturbances has implications for modelling separation bubbles.

310 citations

••

Dana Corporation

^{1}TL;DR: In this paper, a reduced-order vortex model describes the interaction between the shear layer and wake dynamics and guides a path to an efficient feedback control design for the turbulent flow around a D-shaped body.

Abstract: Drag reduction strategies for the turbulent flow around a D-shaped body are examined experimentally and theoretically. A reduced-order vortex model describes the interaction between the shear layer and wake dynamics and guides a path to an efficient feedback control design. The derived feedback controller desynchronizes shear-layer and wake dynamics, thus postponing vortex formation. This actuation is tested in a wind tunnel. The Reynolds number based on the height of the body ranges from 23000 to 70000. We achieve a 40% increase in base pressure associated with a 15% drag reduction employing zero-net-mass-flux actuation. Our controller outperforms other approaches based on open-loop forcing and extremum-seeking feedback strategies in terms of drag reduction, adaptivity, and the required actuation energy.

306 citations

••

TL;DR: In this paper, a general theoretical formalism is developed to assess how base-flow modifications may alter the stability properties of flows studied in a global approach of linear stability theory and also comprises a systematic approach to the passive control of globally unstable flows by the use of small control devices.

Abstract: A general theoretical formalism is developed to assess how base-flow modifications may alter the stability properties of flows studied in a global approach of linear stability theory. It also comprises a systematic approach to the passive control of globally unstable flows by the use of small control devices. This formalism is based on a sensitivity analysis of any global eigenvalue to base-flow modifications. The base-flow modifications investigated are either arbitrary or specific ones induced by a steady force. This leads to a definition of the so-called sensitivity to base-flow modifications and sensitivity to a steady force. These sensitivity analyses are applied to the unstable global modes responsible for the onset of vortex shedding in the wake of a cylinder for Reynolds numbers in the range 47≤Re≤80. First, it is demonstrated how the sensitivity to arbitrary base-flow modifications may be used to identify regions and properties of the base flow that contribute to the onset of vortex shedding. Secondly, the sensitivity to a steady force determines the regions of the flow where a steady force acting on the base flow stabilizes the unstable global modes. Upon modelling the presence of a control device by a steady force acting on the base flow, these predictions are then extensively compared with the experimental results of Strykowski & Sreenivasan (J. Fluid Mech., vol. 218, 1990, p. 71). A physical interpretation of the suppression of vortex shedding by use of a control cylinder is proposed in the light of the sensitivity analysis.

296 citations

••

TL;DR: In this article, a dynamical 10 5-dimensional state-space representation of plane Couette flow at Reynolds number Re = 400 in a small periodic cell is presented, which partially tessellates the region of state space explored by transiently turbulent dynamics with a rigid web of symmetry-induced heteroclinic connections.

Abstract: Motivated by recent experimental and numerical studies of coherent structures in wall-bounded shear flows, we initiate a systematic exploration of the hierarchy of unstable invariant solutions of the Navier-Stokes equations. We construct a dynamical 10 5 -dimensional state-space representation of plane Couette flow at Reynolds number Re = 400 in a small periodic cell and offer a new method of visualizing invariant manifolds embedded in such high dimensions. We compute a new equilibrium solution of plane Couette flow and the leading eigenvalues and eigenfunctions of known equilibria at this Re and cell size. What emerges from global continuations of their unstable manifolds is a surprisingly elegant dynamical-systems visualization of moderate-Re turbulence. The invariant manifolds partially tessellate the region of state space explored by transiently turbulent dynamics with a rigid web of symmetry-induced heteroclinic connections.

291 citations

••

TL;DR: In this article, a hyperbolic two-phase flow model involving five partial differential equations is constructed for liquid-gas interface modelling, which is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps.

Abstract: A hyperbolic two-phase flow model involving five partial differential equations is constructed for liquid-gas interface modelling. The model is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps. These fronts correspond to extra waves in the system. The model involves two temperatures and entropies but a single pressure and a single velocity. The closure is achieved by two equations of state that reproduce the phase diagram when equilibrium is reached. Relaxation toward equilibrium is achieved by temperature and chemical potential relaxation terms whose kinetics is considered infinitely fast at specific locations only, typically at evaporation fronts. Thus, metastable states are involved for locations far from these fronts. Computational results are compared to the experimental ones. Computed and measured front speeds are of the same order of magnitude and the same tendency of increasing front speed with initial temperature is reported. Moreover, the limit case of evaporation fronts propagating in highly metastable liquids with the Chapman-Jouguet speed is recovered as an expansion wave of the present model in the limit of stiff thermal and chemical relaxation.

263 citations

••

TL;DR: In this article, a vertical-equilibrium sharp-interface model for the migration of immiscible gravity currents with constant residual trapping in a two-dimensional confined aquifer is presented.

Abstract: Motivated by geological carbon dioxide (CO2) storage, we present a vertical-equilibrium sharp-interface model for the migration of immiscible gravity currents with constant residual trapping in a two-dimensional confined aquifer. The residual acts as a loss term that reduces the current volume continuously. In the limit of a horizontal aquifer, the interface shape is self-similar at early and at late times. The spreading of the current and the decay of its volume are governed by power-laws. At early times the exponent of the scaling law is independent of the residual, but at late times it decreases with increasing loss. Owing to the self-similar nature of the current the volume does not become zero, and the current continues to spread. In the hyperbolic limit, the leading edge of the current is given by a rarefaction and the trailing edge by a shock. In the presence of residual trapping, the current volume is reduced to zero in finite time. Expressions for the up-dip migration distance and the final migration time are obtained. Comparison with numerical results shows that the hyperbolic limit is a good approximation for currents with large mobility ratios even far from the hyperbolic limit. In gently sloping aquifers, the current evolution is divided into an initial near-parabolic stage, with power-law decrease of volume, and a later near-hyperbolic stage, characterized by a rapid decay of the plume volume. Our results suggest that the efficient residual trapping in dipping aquifers may allow CO2 storage in aquifers lacking structural closure, if CO2 is injected far enough from the outcrop of the aquifer.

256 citations

••

TL;DR: In this paper, the velocity and pressure fluctuations in the logarithmic and outer layers of turbulent flows are analyzed using spectral information and probability density functions from channel simulations at Reτ 2000.

Abstract: The behaviour of the velocity and pressure fluctuations in the logarithmic and outer layers of turbulent flows is analysed using spectral information and probability density functions from channel simulations at Reτ 2000. Comparisons are made with experimental data at higher Reynolds numbers. It is found, in agreement with previous investigations, that the intensity profiles of the streamwise and spanwise velocity components have logarithmic ranges that are traced to the widening spectral range of scales as the wall is approached. The same is true for the pressure, both theoretically and observationally, but not for the normal velocity or for the tangential stress cospectrum, although even those two quantities have structures with lengths of the order of several hundred times the wall distance. Because the logarithmic range grows longer as the Reynolds number increases, variables which are ‘attached’ in this sense scale in the buffer layer in mixed units. These results give strong support to the attached-eddy scenario proposed by Townsend (1976), but they are not linked to any particular eddy model. The scaling of the outer modes is also examined. The intensity of the streamwise velocity at fixed y/h increases with the Reynolds number. This is traced to the large-scale modes, and to an increased intensity of the ejections but not of the sweeps. Several differences are found between the outer structures of different flows. The outer modes of the spanwise and wall-normal velocities in boundary layers are stronger than in internal flows, and their streamwise velocities penetrate closer to the wall. As a consequence, their logarithmic layers are thinner, and some of their logarithmic slopes are different. The channel statistics are available electronically at http://torroja.dmt.upm.es/ftp/channels/.

••

TL;DR: In this article, the authors performed large-eddy simulations of a round normally impinging jet issuing from a long pipe at Reynolds number Re = 20000 at the orifice-to-plate distance H = 2D, where D is the jet-nozzle diameter.

Abstract: In order to gain a better insight into flow, vortical and turbulence structure and their correlation with the local heat transfer in impinging flows, we performed large-eddy simulations (LES) of a round normally impinging jet issuing from a long pipe at Reynolds number Re = 20000 at the orifice-to-plate distance H = 2D, where D is the jet-nozzle diameter. This configuration was chosen to match previous experiments in which several phenomena have been detected, but the underlying physics remained obscure because of limitations in the measuring techniques applied. The instantaneous velocity and temperature fields, generated by the LES, revealed interesting time and spatial dynamics of the vorticity and eddy structures and their imprints on the target wall, characterized by tilting and breaking of the edge ring vortices before impingement, flapping, precessing, splitting and pairing of the stagnation point/line, local unsteady separation and flow reversal at the onset of radial jet spreading, streaks pairing and branching in the near-wall region of the radial jets, and others. The LES data provided also a basis for plausible explanations of some of the experimentally detected statistically-averaged flow features such as double peaks in the Nusselt number and the negative production of turbulence energy in the stagnation region. The simulations, performed with an in-house unstructured finite-volume code T-FlowS, using second-order-accuracy discretization schemes for space and time and the dynamic subgrid-scale stress/flux model for unresolved motion, showed large sensitivity of the results to the grid resolution especially in the wall vicinity, suggesting care must be taken in interpreting LES results in impinging flows.

••

TL;DR: In this paper, the authors used numerical simulation data of a Mach 2.9, 24○ compression ramp configuration to analyze the shock motion and found that the high frequency is in the range of (0.007 − 0.013) U∞/δ.

Abstract: Direct numerical simulation data of a Mach 2.9, 24○ compression ramp configuration are used to analyse the shock motion. The motion can be observed from the animated DNS data available with the online version of the paper and from wall-pressure and mass-flux signals measured in the free stream. The characteristic low frequency is in the range of (0.007–0.013) U∞/δ, as found previously. The shock motion also exhibits high-frequency, of O(U∞/δ), small-amplitude spanwise wrinkling, which is mainly caused by the spanwise non-uniformity of turbulent structures in the incoming boundary layer. In studying the low-frequency streamwise oscillation, conditional statistics show that there is no significant difference in the properties of the incoming boundary layer when the shock location is upstream or downstream. The spanwise-mean separation point also undergoes a low-frequency motion and is found to be highly correlated with the shock motion. A small correlation is found between the low-momentum structures in the incoming boundary layer and the separation point. Correlations among the spanwise-mean separation point, reattachment point and the shock location indicate that the low-frequency shock unsteadiness is influenced by the downstream flow. Movies are available with the online version of the paper.

••

TL;DR: In this paper, an analysis of the axial, temporal and azimuthal structure of the pressure field of a co-axial jet with and without serrations on the secondary nozzle lip is presented.

Abstract: Results are presented from pressure measurements performed in the irrotational near field of unbounded co-axial jets. Measurements were made for a variety of velocity and temperature ratios, and configurations both with and without serrations on the secondary nozzle lip. The principal objective of the study is to better understand the near pressure field of the jet, what it can tell us regarding the underlying turbulence structure, and in particular how it can be related to the source mechanisms of the flow.A preliminary analysis of the axial, temporal and azimuthal structure of the pressure field shows it to be highly organized, with axial spatial modes (obtained by proper orthogonal decomposition) which resemble Fourier modes. The effects of serrations on the pressure fluctuations comprise a global reduction in level, a change in the axial energy distribution, and a modification of the evolution of the characteristic time scales.A further analysis in frequency–wavenumber space is then performed, and a filtering operation is used to separate the convective and propagative footprints of the pressure field. This operation reveals two distinct signatures in the propagating component of the field: a low-frequency component which radiates at small angles to the flow axis and is characterized by extensive axial coherence, and a less-coherent high-frequency component which primarily radiates in sideline directions. The serrations are found to reduce the energy of the axially coherent propagating component, but its structure remains fundamentally unchanged; the high-frequency component is found to be enhanced. A further effect of the serrations involves a relative increase of the mean-square pressure level of the acoustic component – integrated over the measurement domain – with respect to the hydrodynamic component. The effect of increasing the velocity and temperature of the primary jet involves a relative increase in the acoustic component of the near field, while the hydrodynamic component remains relatively unchanged: this shows that the additional acoustic energy is generated by the mixing region which is produced by the interaction of the inner and the outer shear layers, whereas the hydrodynamic component of the near field is primarily driven by the outer shear layer.

••

TL;DR: In this article, the authors examined the effect of the plate aspect ratio on the instability threshold and showed that the two-dimensional limit cannot be achieved experimentally because hysteretical behaviour and three-dimensional effects appear for plates of large aspect ratio.

Abstract: We address the flutter instability of a flexible plate immersed in an axial flow. This instability is similar to flag flutter and results from the competition between destabilizing pressure forces and stabilizing bending stiffness. In previous experimental studies, the plates have always appeared much more stable than the predictions of two-dimensional models. This discrepancy is discussed and clarified in this paper by examining experimentally and theoretically the effect of the plate aspect ratio on the instability threshold. We show that the two-dimensional limit cannot be achieved experimentally because hysteretical behaviour and three-dimensional effects appear for plates of large aspect ratio. The nature of the instability bifurcation (sub- or supercritical) is also discussed in the light of recent numerical results.

••

TL;DR: The connection between fluid flow and optical flow is explored in typical flow visualizations to provide a rational foundation for application of the optical flow method to image-based fluid velocity measurements as discussed by the authors.

Abstract: The connection between fluid flow and optical flow is explored in typical flow visualizations to provide a rational foundation for application of the optical flow method to image-based fluid velocity measurements. The projected-motion equations are derived, and the physics-based optical flow equation is given. In general, the optical flow is proportional to the path-averaged velocity of fluid or particles weighted with a relevant field quantity. The variational formulation and the corresponding Euler–Lagrange equation are given for optical flow computation. An error analysis for optical flow computation is provided, which is quantitatively examined by simulations on synthetic grid images. Direct comparisons between the optical flow method and the correlation-based method are made in simulations on synthetic particle images and experiments in a strongly excited turbulent jet.

••

TL;DR: The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows.

Abstract: Thrust performance and wake structure were investigated for a rigid rectangular panel pitching about its leading edge in a free stream. For Re C = O (10 4 ), thrust coefficient was found to depend primarily on Strouhal number St and the aspect ratio of the panel AR . Propulsive efficiency was sensitive to aspect ratio only for AR less than 0.83; however, the magnitude of the peak efficiency of a given panel with variation in Strouhal number varied inversely with the amplitude to span ratio A/S , while the Strouhal number of optimum efficiency increased with increasing A/S . Peak efficiencies between 9% and 21% were measured. Wake structures corresponding to a subset of the thrust measurements were investigated using dye visualization and digital particle image velocimetry. In general, the wakes divided into two oblique jets; however, when operating at or near peak efficiency, the near wake in many cases represented a Karman vortex street with the signs of the vortices reversed. The three-dimensional structure of the wakes was investigated in detail for AR = 0.54, A/S = 0.31 and Re C = 640. Three distinct wake structures were observed with variation in Strouhal number. For approximately 0.20 St St > 0.25, a reorganization of some of the spanwise vorticity yielded a bifurcating wake formed by trains of vortex rings connected to the tips of the horseshoes. For St > 0.5, an additional structure formed from a perturbation of the streamwise leg which caused a spanwise expansion. The wake model paradigm established here is robust with variation in Reynolds number and is consistent with structures observed for a wide variety of unsteady flows. Movies are available with the online version of the paper.

••

TL;DR: In this paper, a numerical simulation of vortex-induced vibrations of a circular cylinder of low non-dimensional mass (m* = 10) in the laminar flow regime (60 < Re < 200) is presented.

Abstract: Results are presented for a numerical simulation of vortex-induced vibrations of a circular cylinder of low non-dimensional mass (m* = 10) in the laminar flow regime (60 < Re < 200). The natural structural frequency of the oscillator, fN, matches the vortex shedding frequency for a stationary cylinder at Re = 100. This corresponds to fN D2/ν = 16.6, where D is the diameter of the cylinder and ν the coefficient of viscosity of the fluid. A stabilized space–time finite element formulation is utilized to solve the incompressible flow equations in primitive variables form in two dimensions. Unlike at high Re, where the cylinder response is known to be associated with three branches, at low Re only two branches are identified: ‘initial’ and ‘lower’. For a blockage of 2.5% and less the onset of synchronization, in the lower Re range, is accompanied by an intermittent switching between two modes with vortex shedding occurring at different frequencies. With higher blockage the jump from the initial to lower branch is hysteretic. Results from free vibrations are compared to the data from experiments for forced vibrations reported earlier. Excellent agreement is observed for the critical amplitude required for the onset of synchronization. The comparison brings out the possibility of hysteresis in forced vibrations. The phase difference between the lift force and transverse displacement shows a jump of almost 180° at, approximately, the middle of the synchronization region. This jump is not hysteretic and it is not associated with any radical change in the vortex shedding pattern. Instead, it is caused by changes in the location and value of the maximum suction on the lower and upper surface of the cylinder. This is observed clearly by comparing the time-averaged flow for a vibrating cylinder for different Re. While the mean flow for Re beyond the phase jump is similar to that for a stationary cylinder, it is associated with a pair of counter-rotating vortices in the near wake for Re prior to the phase jump. The phase jump appears to be one of the mechanisms of the oscillator to self-limit its vibration amplitude.

••

TL;DR: In this article, a linear stability analysis is conducted to search for three-dimensional global instabilities of the 2D mean flow for cavities that are homogeneous in the spanwise direction.

Abstract: Direct numerical simulations are performed to investigate the three-dimensional stability of compressible flow over open cavities. A linear stability analysis is conducted to search for three-dimensional global instabilities of the two-dimensional mean flow for cavities that are homogeneous in the spanwise direction. The presence of such instabilities is reported for a range of flow conditions and cavity aspect ratios. For cavities of aspect ratio (length to depth) of 2 and 4, the three-dimensional mode has a spanwise wavelength of approximately one cavity depth and oscillates with a frequency about one order of magnitude lower than two-dimensional Rossiter (flow/acoustics) instabilities. A steady mode of smaller spanwise wavelength is also identified for square cavities. The linear results indicate that the instability is hydrodynamic (rather than acoustic) in nature and arises from a generic centrifugal instability mechanism associated with the mean recirculating vortical flow in the downstream part of the cavity. These three-dimensional instabilities are related to centrifugal instabilities previously reported in flows over backward-facing steps, lid-driven cavity flows and Couette flows. Results from three-dimensional simulations of the nonlinear compressible Navier–Stokes equations are also reported. The formation of oscillating (and, in some cases, steady) spanwise structures is observed inside the cavity. The spanwise wavelength and oscillation frequency of these structures agree with the linear analysis predictions. When present, the shear-layer (Rossiter) oscillations experience a low-frequency modulation that arises from nonlinear interactions with the three-dimensional mode. The results are consistent with observations of low-frequency modulations and spanwise structures in previous experimental and numerical studies on open cavity flows.

••

TL;DR: In this paper, the authors presented the energy growth of two-and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two, and the critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7.

Abstract: Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components.

••

TL;DR: The laminar-turbulent boundary Sigma is the set separating initial conditions which relaminarize uneventfully from those which become turbulent as discussed by the authors, and is defined as the boundary that separates initial conditions from those that become turbulent.

Abstract: The laminar-turbulent boundary Sigma is the set separating initial conditions which relaminarize uneventfully from those which become turbulent. Phase space trajectories on this hypersurface in cyl ...

••

TL;DR: In this paper, the authors investigated the entrainment, deposition and motion of coarse spherical particles within a turbulent shallow water stream down a steep slope and developed a birth-death immigration-emigration Markov process to describe the particle exchanges between the bed and the water stream.

Abstract: We investigate the entrainment, deposition and motion of coarse spherical particles within a turbulent shallow water stream down a steep slope. This is an idealization of bed-load transport in mountain streams. Earlier investigations have described this kind of sediment transport using empirical correlations or concepts borrowed from continuum mechanics. The intermittent character of particle transport at low-water discharges led us to consider it as a random process. Sediment transport in this regime results from the imbalance between entrainment and deposition of particles rather than from momentum balance between water and particles. We develop a birth–death immigration–emigration Markov process to describe the particle exchanges between the bed and the water stream. A key feature of the model is its long autocorrelation times and wide, frequent fluctuations in the solid discharge, a phenomenon never previously explained despite its ubiquity in both nature and laboratory experiments. We present experimental data obtained using a nearly two-dimensional channel and glass beads as a substitute for sediment. Entrainment, trajectories, and deposition were monitored using a high-speed digital camera. The empirical probability distributions of the solid discharge and deposition frequency were properly described by the theoretical model. Experiments confirmed the existence of wide and frequent fluctuations of the solid discharge, and revealed the existence of long autocorrelation time, but theory overestimates the autocorrelation times by a factor of around three. Particle velocity was weakly dependent on the fluid velocity contrary to the predictions of the theoretical model, which performs well when a single particle is moving. For our experiments, the dependence of the solid discharge on the fluid velocity is entirely controlled by the number of moving particles rather than by their velocity. We also noted significant changes in the behaviour of particle transport when the bed slope or the water discharge was increased. The more vigorous the stream was, the more continuous the solid discharge became. Moreover, although 90% of the energy supplied by gravity to the stream is dissipated by turbulence for slopes lower than 10%, particles dissipate more and more energy when the bed slope is increased, but surprisingly, the dissipation rate is nearly independent of fluid velocity. A movie is available with the online version of the paper.

••

TL;DR: In this paper, a computational fluid dynamics cavitation model based on the Eulerian-Lagrangian approach and suitable for hole-type diesel injector nozzles is presented and discussed.

Abstract: A computational fluid dynamics cavitation model based on the Eulerian–Lagrangian approach and suitable for hole-type diesel injector nozzles is presented and discussed. The model accounts for a number of primary physical processes pertinent to cavitation bubbles, which are integrated into the stochastic framework of the model. Its predictive capability has been assessed through comparison of the calculated onset and development of cavitation inside diesel nozzle holes against experimental data obtained in real-size and enlarged models of single- and multi-hole nozzles. For the real-size nozzle geometry, high-speed cavitation images obtained under realistic injection pressures are compared against model predictions, whereas for the large-scale nozzle, validation data include images from a charge-coupled device (CCD) camera, computed tomography (CT) measurements of the liquid volume fraction and laser Doppler velocimetry (LDV) measurements of the liquid mean and root mean square (r.m.s.) velocities at different cavitation numbers (CN) and two needle lifts, corresponding to different cavitation regimes inside the injection hole. Overall, and on the basis of this validation exercise, it can be argued that cavitation modelling has reached a stage of maturity, where it can usefully identify many of the cavitation structures present in internal nozzle flows and their dependence on nozzle design and flow conditions.

••

TL;DR: In this article, a two-dimensional model for the flapping of an elastic flag under axial flow is described and the vortical wake is accounted for by shedding of discrete point vortices with unsteady intensity, enforcing the regularity condition at the flag's trailing edge.

Abstract: A two-dimensional model for the flapping of an elastic flag under axial flow is described. The vortical wake is accounted for by the shedding of discrete point vortices with unsteady intensity, enforcing the regularity condition at the flag's trailing edge. The stability of the flat state of rest as well as the characteristics of the flapping modes in the periodic regime are compared successfully to existing linear stability and experimental results. An analysis of the flapping regime shows the co-existence of direct kinematic waves, travelling along the flag in the same direction as the imposed flow, and reverse dynamic waves, travelling along the flag upstream from the trailing edge.

••

TL;DR: In this article, the authors compare Taylor's approximation with those obtained from particle image velocimetry (PIV), obtained in the logarithmic region of a turbulent boundary layer.

Abstract: Taylor's hypothesis of frozen flow has frequently been used to convert temporal experimental measurements into a spatial domain. This technique has led to the discovery of long meandering structures in the log-region of a turbulent boundary layer. There is some contention over whether Taylor's approximation is valid over large distances. This paper presents an experiment that compares velocity fields constructed using Taylor's approximation with those obtained from particle image velocimetry (PIV), i.e. spatial data, obtained in the logarithmic region of a turbulent boundary layer.

••

TL;DR: In this paper, the radial distribution function (RDF) has been calculated from the particle position field, which is a statistical measure of clustering, and the results provide important guidance on ways to improve the measurement.

Abstract: This paper presents the first detailed comparisons between experiments and direct numerical simulations (DNS) of inertial particle clustering in nearly isotropic 'box turbulence'. The experimental system consists of a box 38 cm in each dimension with fans in the eight corners that sustain nearly isotropic turbulence in the centre of the box. We inject hollow glass spheres with a mean diameter of 6 μm and measure the locations of several hundred particles in a 1 cm 3 volume in the centre of the box using three-dimensional digital holographic particle imaging. We observe particle concentration fluctuations that result from inertial clustering (sometimes called 'preferential concentration'). The radial distribution function (RDF), a statistical measure of clustering, has been calculated from the particle position field. We select this measure because of its relevance to the collision kernel for particles. DNS of the equivalent system, with nearly perfect parameter overlap, have also been performed. We observe good agreement between the RDF predictions of the DNS and the experimental observations, despite some challenges in the interpretation of the experiments. The results provide important guidance on ways to improve the measurement.

••

TL;DR: In this article, high-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, referred to as string-cavitation.

Abstract: Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as ‘string-cavitation’. Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection events, implying significant hole-to-hole and cycle-to-cycle variations during the corresponding spray development.

••

TL;DR: In this paper, the authors examined the influence of an external flow on plastron breathing in fast-flowing, shallow and well-aerated streams, and found that flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the Plastron interface.

Abstract: The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or 'plastron', and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O 2 and CO 2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

••

TL;DR: In this paper, the lateral dispersion of passive solute in random arrays of rigid, emergent cylinders of solid volume fraction φ=0.010-0.35 was measured.

Abstract: Laser-induced fluorescence was used to measure the lateral dispersion of passive solute in random arrays of rigid, emergent cylinders of solid volume fraction φ=0.010–0.35. Such densities correspond to those observed in aquatic plant canopies and complement those in packed beds of spheres, where φ≥0.5. This paper focuses on pore Reynolds numbers greater than Res=250, for which our laboratory experiments demonstrate that the spatially averaged turbulence intensity and Kyy/(Upd), the lateral dispersion coefficient normalized by the mean velocity in the fluid volume, Up, and the cylinder diameter, d, are independent of Res. First, Kyy/(Upd) increases rapidly with φ from φ =0 to φ=0.031. Then, Kyy/(Upd) decreases from φ=0.031 to φ=0.20. Finally, Kyy/(Upd) increases again, more gradually, from φ=0.20 to φ=0.35. These observations are accurately described by the linear superposition of the proposed model of turbulent diffusion and existing models of dispersion due to the spatially heterogeneous velocity field that arises from the presence of the cylinders. The contribution from turbulent diffusion scales with the mean turbulence intensity, the characteristic length scale of turbulent mixing and the effective porosity. From a balance between the production of turbulent kinetic energy by the cylinder wakes and its viscous dissipation, the mean turbulence intensity for a given cylinder diameter and cylinder density is predicted to be a function of the form drag coefficient and the integral length scale lt. We propose and experimentally verify that lt=min{d, 〈sn〉A}, where 〈sn〉A is the average surface-to-surface distance between a cylinder in the array and its nearest neighbour. We farther propose that only turbulent eddies with mixing length scale greater than d contribute significantly to net lateral dispersion, and that neighbouring cylinder centres must be farther than r* from each other for the pore space between them to contain such eddies. If the integral length scale and the length scale for mixing are equal, then r*=2d. Our laboratory data agree well with predictions based on this definition of r*.

••

TL;DR: In this article, a tensor generalization of the Navier slip boundary condition is proposed to capture complicated effects of surface anisotropy, while preserving a simple fluid domain, and exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures are provided.

Abstract: We describe a tensorial generalization of the Navier slip boundary condition and illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial slip can be derived from molecular or microstructural theories or simply postulated as a constitutive relation, subject to certain general constraints on the interfacial mobility. The power of the tensor formalism is to capture complicated effects of surface anisotropy, while preserving a simple fluid domain. This is demonstrated by exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures. From such solutions, the effects of rotating a texture follow from simple matrix algebra. Our results may be useful for extracting local slip tensors from global measurements, such as the permeability of a textured channel or the force required to move a patterned surface, in experiments or simulations.