scispace - formally typeset
Open AccessPosted Content

To prune, or not to prune: exploring the efficacy of pruning for model compression

Reads0
Chats0
TLDR
In this article, the authors investigate two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning.
Abstract
Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.

read more

Citations
More filters
Posted Content

Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned

TL;DR: The authors evaluate the contribution made by individual attention heads in the encoder to the overall performance of the model and analyze the roles played by them, finding that the most important and confident heads play consistent and often linguistically-interpretable roles.
Posted Content

Visual Wake Words Dataset

TL;DR: A new dataset, Visual Wake Words, is presented that represents a common microcontroller vision use-case of identifying whether a person is present in the image or not, and provides a realistic benchmark for tiny vision models.
Posted Content

Low-Memory Neural Network Training: A Technical Report.

TL;DR: This paper profiles the overall memory usage of training on two representative deep learning benchmarks and comprehensively evaluates four standard techniques for reducing the training memory requirements: imposing sparsity on the model, using low precision, microbatching, and gradient checkpointing.
Journal ArticleDOI

Deep Learning on Mobile and Embedded Devices: State-of-the-art, Challenges, and Future Directions

TL;DR: This survey conducts an in-depth survey on important compression and acceleration techniques that help adapt deep learning models to mobile and embedded devices, which are specifically classify as pruning, quantization, model distillation, network design strategies, and low-rank factorization.
Posted Content

Rigging the Lottery: Making All Tickets Winners

TL;DR: In this article, the authors introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-to-sparse training methods.
References
More filters
Posted Content

Rethinking the Inception Architecture for Computer Vision

TL;DR: This work is exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization.
Posted Content

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

TL;DR: This work introduces two simple global hyper-parameters that efficiently trade off between latency and accuracy and demonstrates the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
Proceedings Article

Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

TL;DR: Deep Compression as mentioned in this paper proposes a three-stage pipeline: pruning, quantization, and Huffman coding to reduce the storage requirement of neural networks by 35x to 49x without affecting their accuracy.
Posted Content

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

TL;DR: GNMT, Google's Neural Machine Translation system, is presented, which attempts to address many of the weaknesses of conventional phrase-based translation systems and provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delicited models.
Proceedings Article

Learning both weights and connections for efficient neural networks

TL;DR: In this paper, the authors proposed a method to reduce the storage and computation required by neural networks by an order of magnitude without affecting their accuracy by learning only the important connections using a three-step method.
Trending Questions (1)
How to prune?

Copilot couldn't generate the response. Please try again after some time.