scispace - formally typeset
Open AccessJournal ArticleDOI

Using Deep Transfer Learning to Detect Hyperkalemia From Ambulatory Electrocardiogram Monitors in Intensive Care Units: Personalized Medicine Approach

Reads0
Chats0
TLDR
In this article , a 1D convolutional neural network-based deep learning model was developed to predict hyperkalemia in a generic population, which was used in an active transfer learning process to perform patient-adaptive heartbeat classification tasks.
Abstract
Background Hyperkalemia is a critical condition, especially in intensive care units. So far, there have been no accurate and noninvasive methods for recognizing hyperkalemia events on ambulatory electrocardiogram monitors. Objective This study aimed to improve the accuracy of hyperkalemia predictions from ambulatory electrocardiogram (ECG) monitors using a personalized transfer learning method; this would be done by training a generic model and refining it with personal data. Methods This retrospective cohort study used open source data from the Waveform Database Matched Subset of the Medical Information Mart From Intensive Care III (MIMIC-III). We included patients with multiple serum potassium test results and matched ECG data from the MIMIC-III database. A 1D convolutional neural network–based deep learning model was first developed to predict hyperkalemia in a generic population. Once the model achieved a state-of-the-art performance, it was used in an active transfer learning process to perform patient-adaptive heartbeat classification tasks. Results The results show that by acquiring data from each new patient, the personalized model can improve the accuracy of hyperkalemia detection significantly, from an average of 0.604 (SD 0.211) to 0.980 (SD 0.078), when compared with the generic model. Moreover, the area under the receiver operating characteristic curve level improved from 0.729 (SD 0.240) to 0.945 (SD 0.094). Conclusions By using the deep transfer learning method, we were able to build a clinical standard model for hyperkalemia detection using ambulatory ECG monitors. These findings could potentially be extended to applications that continuously monitor one’s ECGs for early alerts of hyperkalemia and help avoid unnecessary blood tests.

read more

Content maybe subject to copyright    Report

References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Posted Content

Deep Residual Learning for Image Recognition

TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Journal Article

Visualizing Data using t-SNE

TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Proceedings ArticleDOI

Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

TL;DR: This work combines existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and applies it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures.
Journal ArticleDOI

MIMIC-III, a freely accessible critical care database

TL;DR: The Medical Information Mart for Intensive Care (MIMIC-III) as discussed by the authors is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital.
Related Papers (5)