scispace - formally typeset
Search or ask a question

Showing papers on "North Greenland Ice Core Project published in 2014"


Journal ArticleDOI
TL;DR: In this paper, a more detailed and extended version of the Greenland Stadials (GS) and Greenland Interstadials (GI) template for the whole of the last glacial period is presented, based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records.

1,417 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every Dansgaard-Oeschger (DO) event based on δ15N isotope measurements combined with a firn densification and heat diffusion model.
Abstract: . In order to reconstruct the temperature of the North Greenland Ice Core Project (NGRIP) site, new measurements of δ15N have been performed covering the time period from the beginning of the Holocene to Dansgaard–Oeschger (DO) event 8. Together with previously measured and mostly published δ15N data, we present for the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every DO event based on δ15N isotope measurements combined with a firn densification and heat diffusion model. The detected temperature rises at the onset of DO events range from 5 °C (DO 25) up to 16.5 °C (DO 11) with an uncertainty of ±3 °C. To bring measured and modelled data into agreement, we had to reduce the accumulation rate given by the NGRIP ss09sea06bm timescale in some periods by 30 to 35%, especially during the last glacial maximum. A comparison between reconstructed temperature and δ18Oice data confirms that the isotopic composition of the stadial was strongly influenced by seasonality. We evidence an anticorrelation between the variations of the δ18Oice sensitivity to temperature (referred to as α) and obliquity in agreement with a simple Rayleigh distillation model. Finally, we suggest that α might be influenced by the Northern Hemisphere ice sheet volume.

277 citations


Journal ArticleDOI
25 Jul 2014-Science
TL;DR: Synchronization of these regions occurred 15,500 to 11,000 years ago, just prior to and throughout the most abrupt climate transitions of the last 20,000 Years, suggesting that dynamic coupling of North Pacific and North Atlantic climates may lead to critical transitions in Earth’s climate system.
Abstract: Some proposed mechanisms for transmission of major climate change events between the North Pacific and North Atlantic predict opposing patterns of variations; others suggest synchronization. Resolving this conflict has implications for regulation of poleward heat transport and global climate change. New multidecadal-resolution foraminiferal oxygen isotope records from the Gulf of Alaska (GOA) reveal sudden shifts between intervals of synchroneity and asynchroneity with the North Greenland Ice Core Project (NGRIP) δ 18 O record over the past 18,000 years. Synchronization of these regions occurred 15,500 to 11,000 years ago, just prior to and throughout the most abrupt climate transitions of the last 20,000 years, suggesting that dynamic coupling of North Pacific and North Atlantic climates may lead to critical transitions in Earth’s climate system.

78 citations


Journal ArticleDOI
TL;DR: Kindler et al. as discussed by the authors showed that during the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard-Oeschger (DO) events.
Abstract: . During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard–Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the warmings recorded in Greenland were probably hemispheric in extent. Here we substantially extend and complete the North Greenland Ice Core Project (NGRIP) methane record from the Preboreal Holocene (PB) back to the end of the last interglacial period with a mean time resolution of 54 yr. We relate the amplitudes of the methane increases associated with DO events to the amplitudes of the local Greenland NGRIP temperature increases derived from stable nitrogen isotope (δ15N) measurements, which have been performed along the same ice core (Kindler et al., 2014). We find the ratio to oscillate between 5 parts per billion (ppb) per °C and 18 ppb °C−1 with the approximate frequency of the precessional cycle. A remarkably high ratio of 25.5 ppb °C−1 is reached during the transition from the Younger Dryas (YD) to the PB. Analysis of the timing of the fast methane and temperature increases reveals significant lags of the methane increases relative to NGRIP temperature for DO events 5, 9, 10, 11, 13, 15, 19, and 20. These events generally have small methane increase rates and we hypothesize that the lag is caused by pronounced northward displacement of the source regions from stadial to interstadial. We further show that the relative interpolar concentration difference (rIPD) of methane is about 4.5% for the stadials between DO events 18 and 20, which is in the same order as in the stadials before and after DO event 2 around the Last Glacial Maximum. The rIPD of methane remains relatively stable throughout the full last glacial, with a tendency for elevated values during interstadial compared to stadial periods.

70 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the North Greenland Ice Core Project (NGRIP) records of the 10Be flux to reconstruct the solar modulation strength (Φ), which describes the modulation of GCRs throughout the heliosphere, to reconstruct both long-term and subdecadal changes in sunspot numbers (SSNs).
Abstract: Sunspot observations since 1610 A.D. show that the solar magnetic activity displays long-term changes, from Maunder Minimum-like low-activity states to Modern Maximum-like high-activity episodes, as well as short-term variations, such as the pronounced 11-year periodicity. Information on changes in solar activity levels before 1610 relies on proxy records of solar activity stored in natural archives, such as 10Be in ice cores and 14C in tree rings. These cosmogenic radionuclides are produced by the interaction between Galactic cosmic rays (GCRs) and atoms in the Earth’s atmosphere; their production rates are anti-correlated with the solar magnetic activity. The GCR intensity displays a distinct 11-year periodicity due to solar modulation of the GCRs in the heliosphere, which is inversely proportional to, but out of phase with, the 11-year solar cycle. This implies a time lag between the actual solar cycles and the GCR intensity, which is known as the hysteresis effect. In this study, we use the North Greenland Ice Core Project (NGRIP) records of the 10Be flux to reconstruct the solar modulation strength (Φ), which describes the modulation of GCRs throughout the heliosphere, to reconstruct both long-term and subdecadal changes in sunspot numbers (SSNs). We compare three different approaches for reconstructing subdecadal-scale changes in SSNs, including a linear approach and two approaches based on the hysteresis effect, i.e. models with ellipse–linear and ellipse relationships between Φ and SSNs. We find that the ellipse approach provides an amplitude-sensitive reconstruction and the highest cross-correlation coefficients in comparison with the ellipse–linear and linear approaches. The long-term trend in the reconstructed SSNs is computed using a physics-based model and agrees well with the other group SSN reconstructions. The new empirical approach, combining a physics-based model with ellipse-modeling of the 11-year cycle, therefore provides a method for reconstructing SSNs during individual solar cycles based on 10Be in ice cores. This, in turn, represents a new window for studying short-term changes in solar activity on unprecedented timescales, which may help improve our understanding of the solar dynamo.

14 citations