scispace - formally typeset
Search or ask a question

Showing papers on "Photosynthetic reaction centre published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the effect of NaCl treatment on the photosynthetic apparatus of C3 (Pisum sativum L.) and C4 (Zea mays L.) plants under physiological conditions and after treatment with different NaCl concentrations (0-200 mM) were investigated using chlorophyll a fluorescence (pulse-amplitude-modulated (PAM) and JIP test) and P700 photooxidation measurement.
Abstract: Functions of the photosynthetic apparatus of C3 (Pisum sativum L.) and C4 (Zea mays L.) plants under physiological conditions and after treatment with different NaCl concentrations (0–200 mM) were investigated using chlorophyll a fluorescence (pulse-amplitude-modulated (PAM) and JIP test) and P700 photooxidation measurement. Data revealed lower density of the photosynthetic structures (RC/CSo), larger relative size of the plastoquinone (PQ) pool (N) and higher electron transport capacity and photosynthetic rate (parameter RFd) in C4 than in C3 plants. Furthermore, the differences were observed between the two studied species in the parameters characterizing the possibility of reduction in the photosystem (PSI) end acceptors (REo/RC, REo/CSo and δRo). Data revealed that NaCl treatment caused a decrease in the density of the photosynthetic structures and relative size of the PQ pool as well as decrease in the electron transport to the PSI end electron acceptors and the probability of their reduction as well as an increase in the thermal dissipation. The effects were stronger in pea than in maize. The enhanced energy losses after high salt treatment in maize were mainly from the increase in the regulated energy losses (ΦNPQ), while in pea from the increase in non-regulated energy losses (ΦNO). The reduction in the electron transport from QA to the PSI end electron acceptors influenced PSI activity. Analysis of the P700 photooxidation and its decay kinetics revealed an influence of two PSI populations in pea after treatment with 150 mM and 200 mM NaCl, while in maize the negligible changes were registered only at 200 mM NaCl. The experimental results clearly show less salt tolerance of pea than maize.

16 citations


Journal ArticleDOI
TL;DR: In this paper , a two-dimensional electronic-vibrational spectroscopic study of the photosystem II reaction center (PSII-RC) was performed and it was shown that the mixed exciton-charge transfer state, previously proposed to be responsible for the far-red light operation of photosynthesis, is characterized by the Chl D1 + Phe radical pair and can be directly prepared upon photoexcitation.
Abstract: Abstract Photosystem II is crucial for life on Earth as it provides oxygen as a result of photoinduced electron transfer and water splitting reactions. The excited state dynamics of the photosystem II-reaction center (PSII-RC) has been a matter of vivid debate because the absorption spectra of the embedded chromophores significantly overlap and hence it is extremely difficult to distinguish transients. Here, we report the two-dimensional electronic-vibrational spectroscopic study of the PSII-RC. The simultaneous resolution along both the visible excitation and infrared detection axis is crucial in allowing for the character of the excitonic states and interplay between them to be clearly distinguished. In particular, this work demonstrates that the mixed exciton-charge transfer state, previously proposed to be responsible for the far-red light operation of photosynthesis, is characterized by the Chl D1 + Phe radical pair and can be directly prepared upon photoexcitation. Further, we find that the initial electron acceptor in the PSII-RC is Phe, rather than P D1 , regardless of excitation wavelength.

15 citations


Journal ArticleDOI
TL;DR: In this paper , the effects of salinity and osmatic stress on photosynthetic machinery along with physio-biochemical responses in peanut were investigated and the results indicated lower electron transport and higher ROS generation in peanut under stress.

14 citations


Journal ArticleDOI
TL;DR: The structure of the reaction center and light-harvesting complex 1 (LH1) of Rhodobacter sphaeroides has been studied in this article , showing that two transmembrane polypeptides are positioned in the center of the S-shaped RC-LH 1 dimer, interlocking association between the components and mediating RC-lH1 dimerization.
Abstract: Abstract The reaction center (RC) and light-harvesting complex 1 (LH1) form a RC–LH1 core supercomplex that is vital for the primary reactions of photosynthesis in purple phototrophic bacteria. Some species possess the dimeric RC–LH1 complex with a transmembrane polypeptide PufX, representing the largest photosynthetic complex in anoxygenic phototrophs. However, the details of the architecture and assembly mechanism of the RC–LH1 dimer are unclear. Here we report seven cryo-electron microscopy (cryo-EM) structures of RC–LH1 supercomplexes from Rhodobacter sphaeroides . Our structures reveal that two PufX polypeptides are positioned in the center of the S-shaped RC–LH1 dimer, interlocking association between the components and mediating RC–LH1 dimerization. Moreover, we identify another transmembrane peptide, designated PufY, which is located between the RC and LH1 subunits near the LH1 opening. PufY binds a quinone molecule and prevents LH1 subunits from completely encircling the RC, creating a channel for quinone/quinol exchange. Genetic mutagenesis, cryo-EM structures, and computational simulations provide a mechanistic understanding of the assembly and electron transport pathways of the RC–LH1 dimer and elucidate the roles of individual components in ensuring the structural and functional integrity of the photosynthetic supercomplex.

14 citations


Journal ArticleDOI
TL;DR: This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.
Abstract: Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.

14 citations


Journal ArticleDOI
TL;DR: In this article , two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden excitonic and vibronic structure.
Abstract: We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden excitonic and vibronic structure. Through analysis of the coherent dynamics of the BRC we resolve specific coherent signatures that allow us to definitively assign the upper exciton energy of the "special pair." This assignment is supported by simulations of coherent dynamics of a reduced excitonic model of the BRC. The simulations also identify nonsecular vibronic coherence transfer processes neglected in standard models of photosynthetic energy transfer and charge separation. In addition, the coherent dynamics reveal multiple quasi-resonances between key intramolecular pigment vibrations and excited state energy gaps in the BRC. The functional significance of such electronic-vibrational resonances for photosynthetic energy transfer and charge separation remains an open question.

13 citations


Journal ArticleDOI
TL;DR: Photosystem II is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water and formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins.
Abstract: Abstract Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.

12 citations


Journal ArticleDOI
TL;DR: In this article , the N-terminal regions of the Cyt with PufX polypeptides were compared to the pufC subunit of Rhodopila globiformis, supporting a longstanding hypothesis that PufC is phylogenetically related to the Nterminus of the RC-bound Cyt.
Abstract: Abstract Rhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1–reaction center (LH1–RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC ) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a -containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b -containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.

10 citations


Journal ArticleDOI
TL;DR: In this article , the initial steps of photo-system II assembly were investigated using a cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes.
Abstract: Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.

10 citations


Journal ArticleDOI
TL;DR: In this article , the authors present a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms.
Abstract: Rhodobacter sphaeroides is a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms. Here we present cryo-EM structures of the native LH1-RC dimer and an LH1-RC monomer lacking protein-U (ΔU). The native dimer reveals several asymmetric features including the arrangement of its two monomeric components, the structural integrity of protein-U, the overall organization of LH1, and rigidities of the proteins and pigments. PufX plays a critical role in connecting the two monomers in a dimer, with one PufX interacting at its N-terminus with another PufX and an LH1 β-polypeptide in the other monomer. One protein-U was only partially resolved in the dimeric structure, signaling different degrees of disorder in the two monomers. The ΔU LH1-RC monomer was half-moon-shaped and contained 11 α- and 10 β-polypeptides, indicating a critical role for protein-U in controlling the number of αβ-subunits required for dimer assembly and stabilization. These features are discussed in relation to membrane topology and an assembly model proposed for the native dimeric complex.

9 citations


Journal ArticleDOI
TL;DR: It is shown that FTIR spectroelectrochemistry is a useful method not only for estimating the redox potentials but also for detecting the reactions of nearby amino-acid residues coupled with theredox reactions.


Journal ArticleDOI
TL;DR: In this paper , a theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al.
Abstract: A theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al. (Nat. Commun., 2021, 12, 2333). A. marina performs photosynthesis under the visible to far-red light (400-750 nm), which is absorbed by chlorophyll d (Chl-d). It is in contrast to the situation of all the other oxygenic photosynthetic processes of cyanobacteria and plants, which contains chlorophyll a (Chl-a) that absorbs only 400-700 nm visible light. AmPSI contains 70 Chl-d, 1 Chl-d', 2 pheophytin a (Pheo-a), and 12 carotenoids in the currently available structure. A special pair of Chl-d/Chl-d' acts as the electron donor (P740) and two Pheo-a act as the primary electron acceptor A0 as the counterparts of P700 and Chl-a, respectively, of Chl-a-type PSIs. The exciton Hamiltonian of AmPSI was constructed considering the excitonic coupling strength and site energy shift of individual pigments using the Poisson-TrESP (P-TrESP) and charge density coupling (CDC) methods. The model was constructed to fit the experimentally measured spectra of absorption and circular dichroism (CD) spectra during downhill/uphill excitation energy transfer processes. The constructed theoretical model of AmPSI was further compared with the Chl-a-type PSI of Thermosynechococcus elongatus (TePSI), which contains only Chl-a and Chl-a'. The functional properties of AmPSI and TePSI were further examined by the in silico exchange of Chl-d by Chl-a in the models.

Journal ArticleDOI
TL;DR: In this paper , a de novo simplified reaction center protein was developed for light-driven charge separation. But these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts.
Abstract: Abstract Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion. Here, we report the rational design, X-ray crystal structure, and electron transfer activity of a multi-cofactor protein that incorporates essential elements of photosynthetic reaction centers. This highly stable, modular artificial protein framework can be reconstituted in vitro with interchangeable redox centers for nanometer-scale photochemical charge separation. Transient absorption spectroscopy demonstrates Photosystem II-like tyrosine and metal cluster oxidation, and we measure charge separation lifetimes exceeding 100 ms, ideal for light-activated catalysis. This de novo-designed reaction center builds upon engineering guidelines established for charge separation in earlier synthetic photochemical triads and modified natural proteins, and it shows how synthetic biology may lead to a new generation of genetically encoded, light-powered catalysts for solar fuel production.

Journal ArticleDOI
TL;DR: In this paper , the influence of the lipidic environment on Δτ1/2 of PSII core complexes of Thermosynechococcus vulcanus was investigated.
Abstract: In our earlier works, we have identified rate-limiting steps in the dark-to-light transition of PSII. By measuring chlorophyll a fluorescence transients elicited by single-turnover saturating flashes (STSFs) we have shown that in diuron-treated samples an STSF generates only F1 (< Fm) fluorescence level, and to produce the maximum (Fm) level, additional excitations are required, which, however, can only be effective if sufficiently long Δτ waiting times are allowed between the excitations. Biological variations in the half-rise time (Δτ1/2) of the fluorescence increment suggest that it may be sensitive to the physicochemical environment of PSII. Here, we investigated the influence of the lipidic environment on Δτ1/2 of PSII core complexes of Thermosynechococcus vulcanus. We found that while non-native lipids had no noticeable effects, thylakoid membrane lipids considerably shortened the Δτ1/2, from ~ 1 ms to ~ 0.2 ms. The importance of the presence of native lipids was confirmed by obtaining similarly short Δτ1/2 values in the whole T. vulcanus cells and isolated pea thylakoid membranes. Minor, lipid-dependent reorganizations were also observed by steady-state and time-resolved spectroscopic measurements. These data show that the processes beyond the dark-to-light transition of PSII depend significantly on the lipid matrix of the reaction center.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the molecular mechanism of quinone exchange in photosystem II, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations.
Abstract: In photosystem II (PSII) and photosynthetic reaction centers from purple bacteria (PbRC), the electron released from the electronically excited chlorophyll is transferred to the terminal electron acceptor quinone, QB. QB accepts two electrons and two protons before leaving the protein. We investigated the molecular mechanism of quinone exchange in PSII, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations. MD simulations suggest that the release of QB leads to the transformation of the short helix (D1-Phe260 to D1-Ser264), which is adjacent to the stromal helix de (D1-Asn247 to D1-Ile259), into a loop and to the formation of a water-intake channel. Water molecules enter the QB binding pocket via the channel and form an H-bond network. QM/MM calculations indicate that the H-bond network serves as a proton-transfer pathway for the reprotonation of D1-His215, the proton donor during QBH-/QBH2 conversion. Together with the absence of the corresponding short helix but the presence of Glu-L212 in PbRC, it seems likely that the two type-II reaction centers undergo quinone exchange via different mechanisms.

Journal ArticleDOI
TL;DR: In this paper , the exogenous electron mediator 2,6-dichloro1,4-benzoquinone (DCBQ) was used to oxidize peripheral chlorophyll pigments participating in highly delocalised charge transfer (CT) states after initial photoexcitation.
Abstract: Photosystems II and I (PSII and PSI) are the reaction centre complexes that drive the light reactions of photosynthesis. PSII performs light-driven water oxidation (quantum efficiencies and catalysis rates of up to 80% and 1000 $e^{-}\text{s}^{-1}$, respectively) and PSI further photo-energises the harvested electrons (quantum efficiencies of ~100%). The impressive performance of the light harvesting components of photosynthesis has motivated extensive biological, artificial and biohybrid approaches to re-wire photosynthesis to enable higher efficiencies and new reaction pathways, such as H2 evolution or alternative CO2 fixation. To date these approaches have focussed on charge extraction at the terminal electron quinones of PSII and terminal iron-sulfur clusters of PSI. Ideally electron extraction would be possible immediately from the photoexcited reaction centres to enable the greatest thermodynamic gains. However, this was believed to be impossible because the reaction centres are buried around 4 nm within PSII and 5 nm within PSI from the cytoplasmic face. Here, we demonstrate using in vivo ultrafast transient absorption (TA) spectroscopy that it is possible to extract electrons directly from photoexcited PSI and PSII, using both live cyanobacterial cells and isolated photosystems, with the exogenous electron mediator 2,6-dichloro1,4-benzoquinone (DCBQ). We postulate that DCBQ can oxidise peripheral chlorophyll pigments participating in highly delocalised charge transfer (CT) states after initial photoexcitation. Our results open new avenues to study and re-wire photosynthesis for bioenergy and semi-artificial photosynthesis.

Journal ArticleDOI
TL;DR: In this paper , the existence of a stable no reaction center complex (NRC) was shown to be not compatible with co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation.
Abstract: The repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.

Journal ArticleDOI
TL;DR: The properties of the pathway are proposed to be responsible for the very slow charge recombination kinetics observed after continuous illumination and are compared to proton transfer pathways near the secondary quinone as well as those found in photosystem II and cytochrome c oxidase.

Journal ArticleDOI
TL;DR: In this paper , the effect of melatonin priming on photosynthetic electron transport of PS II against heat stress in tall fescue was investigated, which revealed that melatonin weakened the electron transfer efficiency of PSII per light reaction center (RC) at donor-side and receptor-side, while increased the number of RC per unit cross-sectional area.

Journal ArticleDOI
01 Feb 2022-IUCrJ
TL;DR: In this paper , the crystal structures of F(M197)H RC at high resolution obtained using various techniques presented in this report clarify the optical and electrochemical properties of the primary electron donor and the increased resistance of the mutant complex to denaturation.

Journal ArticleDOI
TL;DR: In this article , a modular strategy for rational reaction center maquette design was proposed and the intended maquettes were shown to agree with crystal structures in various states of assembly.
Abstract: New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.

Journal ArticleDOI
TL;DR: In the model of Rhodobacter (Rba) sphaeroides as discussed by the authors, the PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrom c2.

Journal ArticleDOI
TL;DR: In this article , the existence of a stable no reaction center complex (NRC) was shown to be not compatible with co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation.
Abstract: The repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.

Journal ArticleDOI
TL;DR: In this article , the authors summarize recent advances on detecting structural changes for phytochrome photosensor proteins and a bacterial photosynthetic reaction center, and provide a showcase for the importance of detecting ultrafast protein structural dynamics.

Journal ArticleDOI
TL;DR: In this article , the impact of moderate high temperature (35 °C) on photosynthetic efficiency and thylakoid membrane organization in Pisum sativum has been investigated and the results indicate that moderately high temperature can alter supercomplexes, which leads to change in the pigment-protein organization.

Journal ArticleDOI
TL;DR: In the model of Rhodobacter (Rba) sphaeroides as discussed by the authors , light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction center (RC)-LH1-PufX complexes, where quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.
Abstract: In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical 'chromatophore' vesicles. These bacterial 'organelles' are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.

Journal ArticleDOI
TL;DR: The findings to date on the roles of the two Cl− ions bound within the OEC are summarized and the mechanisms of Cl− retention by these extrinsic subunits are discussed.

Journal ArticleDOI
TL;DR: In this paper , chlorophyll a fluorescence was used to evaluate the functional status of photosystem II (PSII) in inverted leaves under elevated temperature and high light, resulting in significantly lower performance indexes (PIABS and PItotal) and net photosynthetic rate (Pn).
Abstract: In summer, high light and elevated temperature are the most common abiotic stresses. The frequent occurrence of monsoon exposes the abaxial surface of soybean [Glycine max (L.) Merr.] leaves to direct solar radiation, resulting in irreversible damage to plant photosynthesis. In this study, chlorophyll a fluorescence was used to evaluate the functional status of photosystem II (PSII) in inverted leaves under elevated temperature and high light. In two consecutive growing seasons, we tested the fluorescence and gas exchange parameters of soybean leaves for 10 days and 15 days (5 days after recovery). Inverted leaves had lower tolerance compared to normal leaves and exhibited lower photosynthetic performance, quantum yield, and electron transport efficiency under combined elevated temperature and high light stress, along with a significant increase in absorption flux per reaction center (RC) and the energy dissipation of the RC, resulting in significantly lower performance indexes (PIABS and PItotal) and net photosynthetic rate (Pn) in inverted leaves. High light and elevated temperature caused irreversible membrane damage in inverted leaves, as photosynthetic performance parameters (Pn, PIABS, and PItotal) did not return to control levels after inverted leaves recovered. In conclusion, inverted leaves exhibited lower photosynthetic performance and PSII activity under elevated temperature and high light stress compared to normal leaves.

Journal ArticleDOI
TL;DR: In this article , light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants ( cycA , cytC4 and pufC ) of Rubrivivax gelatinosus and Rhodobacter sphaeroides.
Abstract: Abstract Light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants ( cycA , cytC4 and pufC ) of Rubrivivax gelatinosus and Rhodobacter sphaeroides . Constant illumination from a laser diode or trains of saturating flashes enabled the kinetic separation of acceptor and donor redox processes, and the electron contribution from the cyt bc 1 complex via periplasmic cytochromes. Under continuous excitation, concentrations of oxidized cytochromes increased in three phases where light intensity, electron transfer rate and the number of reduced cytochromes were the rate liming steps, respectively. By choosing suitable flash timing, gradual steps of cytochrome oxidation in whole cells were observed; each successive flash resulted in a smaller, damped oxidation. We attribute this damping to lowered availability of reduced cytochromes resulting from both exchange (unbinding/binding) of the cytochromes and electron transfer at the reaction center interface since a similar effect is observed upon deletion of genes encoding periplasmic cytochromes. In addition, we present a simple model to calculate the damping effect; application of this method may contribute to understanding the function of the diverse range of c-type cytochromes in the electron transport chains of anaerobic phototrophic bacteria.