scispace - formally typeset
Search or ask a question

Showing papers on "Totipotent published in 1996"


Journal ArticleDOI
TL;DR: Oct-4 expression in the germline is regulated separately from epiblast expression, and this provides the first marker for the identification of totipotent cells in the embryo, and suggests that expression of Oct-4 in the Totipotent cycle is dependent on a set of factors unique to the germ line.
Abstract: The totipotent stem cells of the pregastrulation mouse embryo which give rise to all embryonic somatic tissues and germ cells express Oct-4. The expression is downregulated during gastrulation and is thereafter only maintained in the germline lineage. Oct-4/lacZ transgenes were used to determine how this pattern of expression was achieved, and resulted in the identification of two separate regulatory elements. The distal element drives Oct-4 expression in preimplantation embryos, in migratory and postmigratory primordial germ cells but is inactive in cells of the epiblast. In cell lines this element is specifically active in embryonic stem and embryonic germ cells. The proximal element directs the epiblast-specific expression pattern, including downregulation during gastrulation; in cell lines its activity is restricted to epiblast-derived cells. Thus, Oct-4 expression in the germline is regulated separately from epiblast expression. This provides the first marker for the identification of totipotent cells in the embryo, and suggests that expression of Oct-4 in the totipotent cycle is dependent on a set of factors unique to the germline.

921 citations


Journal ArticleDOI
TL;DR: In murine gastrulation, the potency of epiblast cells that were originally totipotent becomes restricted as development progresses, and this process is altered by exogenous bone morphogenetic protein-4 (BMP-4) or activin A, which may be mesoderm inducers in Xenopus embryogenesis.
Abstract: In murine embryogenesis, all cells that will constitute the embryonic structures originate from the epiblast (primitive ectoderm) tissue, the epithelial cell sheet of the gastrulating embryo. The cells of this tissue are totipotent at the beginning of gastrulation, but at the end of this period are specified to particular cell lineages. Thus, it is likely that during murine gastrulation, the potency of epiblast cells that were originally totipotent becomes restricted as development progresses. However, the mechanisms of this process are unknown. We have investigated this process in vitro, focusing on the hematopoietic cell lineage. To detect the hematogenic potency of the epiblast tissue, we established an in vitro culture system in which the hematopoietic cell differentiation of the epiblast tissue was supported by a stromal cell layer. With this culture system, we investigated the process by which this potency becomes spatially and temporally restricted during gastrulation. The results showed that hematogenic potency resides in the entire epiblast of the early- to mid-gastrulating embryo, but becomes restricted to the posterior half of the epiblast at the headfold stage. Furthermore, we showed that this process is altered by exogenous bone morphogenetic protein-4 (BMP-4) or activin A, which may be mesoderm inducers in Xenopus embryogenesis.

67 citations


Journal ArticleDOI
TL;DR: It is concluded that for neuronal differentiation of totipotent embryonic stem cells in vitro, one biochemical signal, i.e. retinoic acid treatment, is sufficient.

40 citations


Journal ArticleDOI
TL;DR: It has been successfully demonstrated, using epidermis explants of sugar beet (Beta vulgaris L.), that stomatal guard cells retain full totipotent capacity and the importance of these findings both toStomatal research and to the understanding of cytodifferentiation in plants is discussed.
Abstract: It has been successfully demonstrated, using epidermis explants of sugar beet (Beta vulgaris L.), that stomatal guard cells retain full totipotent capacity. Despite having one of the highest degrees of morphological adaptation and a unique physiological specialization, it is possible to induce a re-expression of full (embryogenic) genetic potential in these cells in situ by reversing their highly differentiated nature to produce regenerated plants via a callus stage. The importance of these findings both to stomatal research and to our understanding of cytodifferentiation in plants is discussed.

25 citations