scispace - formally typeset
Search or ask a question

Showing papers on "Transcranial direct-current stimulation published in 2002"


Journal ArticleDOI
01 Oct 2002-Brain
TL;DR: It is suggested that polarity-driven alterations of resting membrane potentials represent the crucial mechanisms of the DC-induced after-effects, leading to both an alteration of spontaneous discharge rates and to a change in NMDA-receptor activation.
Abstract: Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. These plastic excitability changes are selectively controlled by the polarity, duration and current strength of stimulation. To reveal the underlying mechanisms of direct current (DC)-induced neuroplasticity, we combined tDCS of the motor cortex with the application of Na(+)-channel-blocking carbamazepine (CBZ) and the N-methyl-D-aspartate (NMDA)-receptor antagonist dextromethorphan (DMO). Monitored by transcranial magnetic stimulation (TMS), motor cortical excitability changes of up to 40% were achieved in the drug-free condition. Increase of cortical excitability could be selected by anodal stimulation, and decrease by cathodal stimulation. Both types of excitability change lasted several minutes after cessation of current stimulation. DMO suppressed the post-stimulation effects of both anodal and cathodal DC stimulation, strongly suggesting the involvement of NMDA receptors in both types of DC-induced neuroplasticity. In contrast, CBZ selectively eliminated anodal effects. Since CBZ stabilizes the membrane potential voltage-dependently, the results reveal that after-effects of anodal tDCS require a depolarization of membrane potentials. Similar to the induction of established types of short- or long-term neuroplasticity, a combination of glutamatergic and membrane mechanisms is necessary to induce the after-effects of tDCS. On the basis of these results, we suggest that polarity-driven alterations of resting membrane potentials represent the crucial mechanisms of the DC-induced after-effects, leading to both an alteration of spontaneous discharge rates and to a change in NMDA-receptor activation.

1,256 citations


Journal ArticleDOI
TL;DR: This work presents an overview of the more easily performed transcranial direct current stimulation (tDCS) with weak current, which produces distinctly more pronounced changes in excitability than rTMS.
Abstract: Modulation of cerebral excitability is thought to be one mechanism underlying the pharmacological treatment of neuropsychiatric diseases such as epilepsy, depression, and dystonia. Repetitive transcranial magnetic stimulation (rTMS) has been tested for several years as a nonpharmacological, noninvasive method of directly influencing patients' cortical functions. We present an overview of the more easily performed transcranial direct current stimulation (tDCS) with weak current, which produces distinctly more pronounced changes in excitability than rTMS. The basic underlying mechanism is a shift in the resting membrane potential towards either hyper- or depolarisation, depending on stimulation polarity. This in turn leads to changes in the excitability of cortical neurons. Anodic stimulation increases cortical excitability, while cathodic stimulation decreases it. These changes persist after the end of stimulation if the stimulation lasts long enough, i.e., at least several minutes. The duration of this aftereffect can be controlled through the duration and intensity of the stimulation. Transcranial direct current stimulation essentially allows a focal, selective, reversible, pain-free, and noninvasive induction of changes in cortical excitability, the therapeutic potential of which must be evaluated in clinical studies, once possible risk factors have been assessed.

87 citations


Journal ArticleDOI
TL;DR: Transcranial direct current stimulation should be considered as a new treatment for depression, says Nitsche MA.
Abstract: Nitsche MA. Transcranial direct current stimulation: a new treatment for depression? Bipolar Disord 2002: 4(Suppl. 1): 98–99. © Blackwell Munksgaard, 2002

36 citations