scispace - formally typeset
Search or ask a question

Showing papers by "Alessio Bellucci published in 2021"


Journal ArticleDOI
TL;DR: In this article, the impact of model resolution on the representation of air-sea interaction over the Gulf Stream region, in a multi-model ensemble of present-climate simulations performed using a common experimental design, is assessed.
Abstract: A dominant paradigm for mid-latitude air-sea interaction identifies the synoptic-scale atmospheric “noise” as the main driver for the observed ocean surface variability. While this conceptual model successfully holds over most of the mid-latitude ocean surface, its soundness over frontal zones (including western boundary currents; WBC) characterized by intense mesoscale activity, has been questioned in a number of studies suggesting a driving role for the small scale ocean dynamics (mesoscale oceanic eddies) in the modulation of air-sea interaction. In this context, climate models provide a powerful experimental device to inspect the emerging scale-dependent nature of mid-latitude air-sea interaction. This study assesses the impact of model resolution on the representation of air-sea interaction over the Gulf Stream region, in a multi-model ensemble of present-climate simulations performed using a common experimental design. Lead-lag correlation and covariance patterns between sea surface temperature (SST) and turbulent heat flux (THF) are diagnosed to identify the leading regimes of air-sea interaction in a region encompassing both the Gulf Stream system and the North Atlantic subtropical basin. Based on these statistical metrics it is found that coupled models based on “laminar” (eddy-parameterised) and eddy-permitting oceans are able to discriminate between an ocean-driven regime, dominating the region controlled by the Gulf Stream dynamics, and an atmosphere-driven regime, typical of the open ocean regions. However, the increase of model resolution leads to a better representation of SST and THF cross-covariance patterns and functional forms, and the major improvements can be largely ascribed to a refinement of the oceanic model component.

22 citations


Journal ArticleDOI
TL;DR: In this article, the influence of the Atlantic Multidecadal Variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealised simulations with state-of-the-art coupled models.
Abstract: The influence of the Atlantic Multidecadal Variability (AMV) on the North Atlantic storm track and eddy–driven jet in the winter season is assessed via a coordinated analysis of idealised simulations with state-of-the-art coupled models. Data used are obtained from a multi-model ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extra-tropical response is found in the form of a wave-train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted towards the equator in the Eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.

21 citations


Journal ArticleDOI
01 Jun 2021
TL;DR: In this paper, a multidecadal variability (AMV) has been linked to the observed slowdown of global warming over 1998-2012 through its impact on the tropical Pacific.
Abstract: Atlantic multidecadal variability (AMV) has been linked to the observed slowdown of global warming over 1998–2012 through its impact on the tropical Pacific. Given the global importance of tropical Pacific variability, better understanding this Atlantic–Pacific teleconnection is key for improving climate predictions, but the robustness and strength of this link are uncertain. Analyzing a multi-model set of sensitivity experiments, we find that models differ by a factor of 10 in simulating the amplitude of the Equatorial Pacific cooling response to observed AMV warming. The inter-model spread is mainly driven by different amounts of moist static energy injection from the tropical Atlantic surface into the upper troposphere. We reduce this inter-model uncertainty by analytically correcting models for their mean precipitation biases and we quantify that, following an observed 0.26 °C AMV warming, the equatorial Pacific cools by 0.11 °C with an inter-model standard deviation of 0.03 °C.

21 citations


Posted ContentDOI
TL;DR: In this paper, the authors evaluated the performance of the CMCC-CM2 models in representing the spatial distribution of extreme events of temperature and precipitation, under the historical period, comparing model results to observations (ERA5 Reanalysis and CHIRPS observations).
Abstract: . The recent advancements in climate modelling partially build on the improvement of horizontal resolution in different components of the simulating system. A higher resolution is expected to provide a better representation of the climate variability, and in this work we are particularly interested in the potential improvements in representing extreme events of high temperature and precipitation. The two versions of the CMCC-CM2 model used here, adopt the highest horizontal resolutions available within the last family of the global coupled climate models de¬veloped at CMCC to participate in the CMIP6 effort. The main aim of this study is to document the ability of the CMCC-CM2 models in representing the spatial distribution of extreme events of temperature and precipitation, under the historical period, comparing model results to observations (ERA5 Reanalysis and CHIRPS observations). For a more detailed evaluation we investigate both 6 hourly and daily time series for the definition of the extreme conditions. In terms of mean climate, the two models are able to realistically reproduce the main patterns of temperature and precipitation. The very-high resolution version (¼ degree horizontal resolution) of the atmospheric model provides better results than the high resolution one (one degree), not only in terms of means but also in terms of extreme events of temperature defined at daily and 6-hourly frequency. This is also the case of average precipitation. On the other hand the extreme precipitation is not improved by the adoption of a higher horizontal resolution.

3 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare regional climate models (RCMs) based on the coupled model intercomparison project phase 5 (CMIP5) model generation with high resolution global climate models with a comparable spatial resolution from the HighResMIP experiment.
Abstract: Representing the rainy season of the maritime continent is a challenge for global and regional climate models. Here, we compare regional climate models (RCMs) based on the coupled model intercomparison project phase 5 (CMIP5) model generation with high resolution global climate models with a comparable spatial resolution from the HighResMIP experiment. The onset and the total precipitation of the rainy season for both model experiments are compared against observational datasets for Southeast Asia. A realistic representation of the monsoon rainfall is essential for agriculture in Southeast Asia as a delayed onset jeopardizes the possibility of having three annual crops. In general, the coupled historical runs (Hist-1950) and the historical force atmosphere run (HighresSST) of the high resolution model intercomparison project (HighResMIP) suite were consistently closer to the observations than the RCM of CMIP5 used in this study. We find that for the whole of Southeast Asia, the HighResMIP models simulate the onset date and the total precipitation of the rainy season over the region closer to the observations than the other model sets used in this study. High-resolution models in the HighresSST experiment showed a similar performance to their low-resolution equivalents in simulating the monsoon characteristics. The HighresSST experiment simulated the anomaly of the onset date and the total precipitation for different El Nino-southern oscillation (ENSO) conditions best, although the magnitude of the onset date anomaly was underestimated.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the impact of increased atmospheric resolution on the Kuroshio Extension (KE) is assessed inspecting several aspects: the KE bimodality, the large-scale variability and the air-sea interactions.
Abstract: The Kuroshio Extension (KE) shifts between elongated and convoluted states on interannual to decadal time scales. The nature of this low frequency variability (LFV) is still under debate since it is known to be driven by intrinsic oceanic mechanisms, but it is also synchronized with the Pacific Decadal Oscillation (PDO). In this analysis we present the results from two present-climate coupled simulations performed with the CMCC-CM2 model under the CMIP6 HighResMIP protocol and differing only by their atmospheric component resolution. The impact of increased atmospheric resolution on the KE LFV is assessed inspecting several aspects: the KE bimodality, the large-scale variability and the air–sea interactions. The KE LFV and the teleconnection mechanism that connects the KE and the PDO are well captured by both configurations. However, higher atmospheric resolution favors the occurrence of the elongated state and leads to a more realistic PDO representation. Moreover, both simulations qualitatively capture the signatures of atmosphere-driven and ocean-driven regimes over the North Pacific Ocean, even if the higher resolution induces an excessively strong ocean–atmosphere coupling that leads to an overestimation of the air–sea feedbacks. This work highlights that the small scale atmospheric variability (resolution lower than 1°) does not substantially contribute to improve the realism of the KE LFV, but causes significant differences in the air–sea interaction over the KE region likely related to the strengthening of the coupling. The eddy-permitting ocean resolution shared by both configurations is likely responsible for the degree of realism exhibited by the simulated KE LFV in the two analyzed simulations.

3 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate the contribution of oceanic and atmospheric drivers of the Kuroshio Extension (KE) variability by taking advantage of the OCCIPUT 1/4° global model dataset.
Abstract: The Kuroshio Extension (KE) is the inertial meandering jet formed by the convergence of the Kuroshio and Oyashio currents in the Northern Pacific. It is widely mentioned in the literature that the KE variability is bimodal on interannual to decadal time scale. The nature of this low frequency variability (LFV) is still under debate; intrinsic oceanic mechanisms are known to play a fundamental role in the phenomenon but there is also evidence from observations that the KE LFV is connected with changes in broader patterns associated with the Pacific Decadal Oscillation, which is in its turn generated by the dominant decadal mode of the sea level pressure variability in the North Pacific. We investigate the respective contributions of oceanic and atmospheric drivers of the KE variability by taking advantage of the OCCIPUT 1/4° global model dataset: it consists in an ensemble of 50 ocean–sea ice hindcasts performed over the period 1960–2015 (hereafter OCCITENS), and in a one-member 330-year climatological simulation (hereafter OCCICLIM). In this context, OCCITENS simulates both the intrinsic and forced variability, while OCCICLIM simulates the "pure" intrinsic variability. We explore several features of the KE, finding analogies between the OCCICLIM and OCCITENS datasets with autonomous and non-autonomous dynamical systems respectively. This approach aims to apply concepts from the dynamical systems theory on complex and realistic ocean simulations. In this framework, the results suggest that both oceanic and atmospheric drivers control the KE LFV, and that the effect of the low-frequency atmospheric forcing reduces the phase space region explored by the system through synchronization mechanisms. The system’s intrinsic variability can be paced, and therefore clustered over the system’s pullback attractor under the effect of the time dependent forcing.

2 citations


Journal ArticleDOI
TL;DR: In this article, the impact of horizontal resolution in setting the North Atlantic gyre circulation and representing the ocean-atmosphere interactions that modulate the low-frequency variability in the region were analyzed.
Abstract: We study the impact of horizontal resolution in setting the North Atlantic gyre circulation and representing the ocean–atmosphere interactions that modulate the low-frequency variability in the region. Simulations from five state-of-the-art climate models performed at standard and high-resolution as part of the High-Resolution Model Inter-comparison Project (HighResMIP) were analysed. In some models, the resolution is enhanced in the atmospheric and oceanic components whereas, in some other models, the resolution is increased only in the atmosphere. Enhancing the horizontal resolution from non-eddy to eddy-permitting ocean produces stronger barotropic mass transports inside the subpolar and subtropical gyres. The first mode of inter-annual variability is associated with the North Atlantic Oscillation (NAO) in all the cases. The rapid ocean response to it consists of a shift in the position of the inter-gyre zone and it is better captured by the non-eddy models. The delayed ocean response consists of an intensification of the subpolar gyre (SPG) after around 3 years of a positive phase of NAO and it is better represented by the eddy-permitting oceans. A lagged relationship between the intensity of the SPG and the Atlantic Meridional Overturning Circulation (AMOC) is stronger in the cases of the non-eddy ocean. Then, the SPG is more tightly coupled to the AMOC in low-resolution models.

1 citations