scispace - formally typeset
Search or ask a question

Showing papers by "Ana Rey-Rico published in 2020"


Journal ArticleDOI
TL;DR: These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV‐FLAG‐hsox9/PEO–PPO–PEO hydrogel‐augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.
Abstract: Advanced biomaterial-guided delivery of gene vectors is an emerging and highly attractive therapeutic solution for targeted articular cartilage repair, allowing for a controlled and minimally invasive delivery of gene vectors in a spatiotemporally precise manner, reducing intra-articular vector spread and possible loss of the therapeutic gene product. As far as it is known, the very first successful in vivo application of such a biomaterial-guided delivery of a potent gene vector in an orthotopic large animal model of cartilage damage is reported here. In detail, an injectable and thermosensitive hydrogel based on poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO poloxamers, capable of controlled release of a therapeutic recombinant adeno-associated virus (rAAV) vector overexpressing the chondrogenic sox9 transcription factor in full-thickness chondral defects, is applied in a clinically relevant minipig model in vivo. These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV-FLAG-hsox9/PEO-PPO-PEO hydrogel-augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.

89 citations


Journal ArticleDOI
TL;DR: This work provides an overview of the most avant-garde approaches using various hydrogels systems for controlled delivery of therapeutic nucleic acid molecules in different regenerative medicine approaches.
Abstract: Hydrogel-based nonviral gene delivery constitutes a powerful strategy in various regenerative medicine scenarios, as those concerning the treatment of musculoskeletal, cardiovascular, or neural tissues disorders as well as wound healing. By a minimally invasive administration, these systems can provide a spatially and temporarily defined supply of specific gene sequences into the target tissue cells that are overexpressing or silencing the original gene, which can promote natural repairing mechanisms to achieve the desired effect. In the present work, we provide an overview of the most avant-garde approaches using various hydrogels systems for controlled delivery of therapeutic nucleic acid molecules in different regenerative medicine approaches.

19 citations


Journal ArticleDOI
TL;DR: The findings show the benefits of targeting patients’ bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.
Abstract: Background: The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. Methods: Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(e-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. Results: Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. Conclusions: These findings show the benefits of targeting patients’ bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.

14 citations


Journal ArticleDOI
TL;DR: The aim of this work was to design for the first time hydrogel contact lenses that can act as platforms for the controlled delivery of viral vectors to the eye in an effective way with improved patient compliance.
Abstract: As an alternative to eye drops and ocular injections for gene therapy, the aim of this work was to design for the first time hydrogel contact lenses that can act as platforms for the controlled delivery of viral vectors (recombinant adeno-associated virus, rAAV) to the eye in an effective way with improved patient compliance. Hydrogels of hydroxyethyl methacrylate (HEMA) with aminopropyl methacrylamide (APMA) (H1: 40, and H2: 80 mM) or without (Hc: 0 mM) were synthesized, sterilized by steam heat (121 °C, 20 min), and then tested for gene therapy using rAAV vectors to deliver the genes to the cornea. The hydrogels showed adequate light transparency, oxygen permeability, and swelling for use as contact lenses. Loading of viral vectors (rAAV-lacZ, rAAV-RFP, or rAAV-hIGF-I) was carried out at 4 °C to maintain viral vector titer. Release in culture medium was monitored by fluorescence with Cy3-rAAV-lacZ and AAV Titration ELISA. Transduction efficacy was tested through reporter genes lacZ and RFP in human bone marrow derived mesenchymal stem cells (hMSCs). lacZ was detected with X-Gal staining and quantified with Beta-Glo®, and RFP was monitored by fluorescence. The ability of rAAV-hIGF-I-loaded hydrogels to trigger cell proliferation in hMSCs was evaluated by immunohistochemistry. Finally, the ability of rAAV-lacZ-loaded hydrogels to transduce bovine cornea was confirmed through detection with X-Gal staining of β-galactosidase expressed within the tissue.

13 citations


Journal ArticleDOI
TL;DR: An overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials shows that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondrals neotissue composition in vitro.
Abstract: Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.

12 citations


Journal ArticleDOI
TL;DR: The results reveal the potential of CD-guided rAAV gene administration in hMSCs as safe, non-invasive systems for translational strategies to enhance cartilage repair.
Abstract: Scaffold-assisted gene therapy is a highly promising tool to treat articular cartilage lesions upon direct delivery of chondrogenic candidate sequences. The goal of this study was to examine the feasibility and benefits of providing highly chondroreparative agents, the cartilage-specific sex-determining region Y-type high-mobility group 9 (SOX9) transcription factor or the transforming growth factor beta (TGF-β), to human bone marrow-derived mesenchymal stromal cells (hMSCs) via clinically adapted, independent recombinant adeno-associated virus (rAAV) vectors formulated with carbon dots (CDs), a novel class of carbon-dominated nanomaterials. Effective complexation and release of a reporter rAAV-lacZ vector was achieved using four different CDs elaborated from 1-citric acid and pentaethylenehexamine (CD-1); 2-citric acid, poly(ethylene glycol) monomethyl ether (MW 550 Da), and N,N-dimethylethylenediamine (CD-2); 3-citric acid, branched poly(ethylenimine) (MW 600 Da), and poly(ethylene glycol) monomethyl ether (MW 2 kDa) (CD-3); and 4-citric acid and branched poly(ethylenimine) (MW 600 Da) (CD-4), allowing for the genetic modification of hMSCs. Among the nanoparticles, CD-2 showed an optimal ability for rAAV delivery (up to 2.2-fold increase in lacZ expression relative to free vector treatment with 100% cell viability for at least 10 days, the longest time point examined). Administration of therapeutic (SOX9, TGF-β) rAAV vectors in hMSCs via CD-2 led to the effective overexpression of each independent transgene, promoting enhanced cell proliferation (TGF-β) and cartilage matrix deposition (glycosaminoglycans, type-II collagen) for at least 21 days relative to control treatments (CD-2 lacking rAAV or associated to rAAV-lacZ), while advantageously restricting undesirable type-I and -X collagen deposition. These results reveal the potential of CD-guided rAAV gene administration in hMSCs as safe, non-invasive systems for translational strategies to enhance cartilage repair.

12 citations


Journal ArticleDOI
TL;DR: It is reported that effective, micelle-guided rAAV sox9 overexpression enhanced the deposition of ECM components and the levels of cell survival, while advantageously reversing the deleterious effects afforded by the OA cytokines on these processes.
Abstract: Osteoarthritis (OA) is a prevalent joint disease linked to the irreversible degradation of key extracellular cartilage matrix (ECM) components (proteoglycans, type-II collagen) by proteolytic enzymes due to an impaired tissue homeostasis, with the critical involvement of OA-associated pro-inflammatory cytokines (interleukin 1 beta, ie, IL-1β, and tumor necrosis factor alpha, ie, TNF-α) Gene therapy provides effective means to re-establish such degraded ECM compounds by rejuvenating the altered OA phenotype of the articular chondrocytes, the unique cell population ubiquitous in the articular cartilage In particular, overexpression of the highly specialized SOX9 transcription factor via recombinant adeno-associated viral (rAAV) vectors has been reported for its ability to readjust the metabolic balance in OA, in particular via controlled rAAV delivery using polymeric micelles as carriers to prevent a possible vector neutralization by antibodies present in the joints of patients As little is known on the challenging effects of such naturally occurring OA-associated pro-inflammatory cytokines on such rAAV/polymeric gene transfer, we explored the capacity of polyethylene oxide (PEO) and polypropylene oxide (PPO)-based polymeric micelles to deliver a candidate rAAV-FLAG-hsox9 construct in human OA chondrocytes in the presence of IL-1β and TNF-α We report that effective, micelle-guided rAAV sox9 overexpression enhanced the deposition of ECM components and the levels of cell survival, while advantageously reversing the deleterious effects afforded by the OA cytokines on these processes These findings highlight the potentiality of polymeric micelles as effective rAAV controlled delivery systems to counterbalance the specific contribution of major OA-associated inflammatory cytokines, supporting the concept of using such systems for the treatment for chronic inflammatory diseases like OA

7 citations