scispace - formally typeset
Search or ask a question

Showing papers by "Annmarie Eldering published in 2016"


Journal ArticleDOI
TL;DR: The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns.
Abstract: . The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO2 dry-air mole fraction, XCO2. Variations of XCO2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO2. This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small ( To meet its demanding measurement requirements, each OCO-2 spectrometer channel collects 24 spectra s−1 across a narrow ( 17 000), dynamic range (∼ 104), and sensitivity (continuum signal-to-noise ratio > 400). The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community.

265 citations


Journal ArticleDOI
TL;DR: In this article, the first major release of the OCO2 retrieval algorithm (B7r) and X_(CO2) from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TCCON) were compared.
Abstract: NASA's Orbiting Carbon Observatory-2 (OCO-2) has been measuring carbon dioxide column-averaged dry-air mole fraction, X_(CO_2), in the Earth's atmosphere for over 2 years. In this paper, we describe the comparisons between the first major release of the OCO-2 retrieval algorithm (B7r) and X_(CO2) from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TCCON). The OCO-2 X_(CO_2) retrievals, after filtering and bias correction, agree well when aggregated around and coincident with TCCON data in nadir, glint, and target observation modes, with absolute median differences less than 0.4 ppm and RMS differences less than 1.5 ppm. After bias correction, residual biases remain. These biases appear to depend on latitude, surface properties, and scattering by aerosols. It is thus crucial to continue measurement comparisons with TCCON to monitor and evaluate the OCO-2 X_(CO_2) data quality throughout its mission.

232 citations



Journal ArticleDOI
TL;DR: The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales as discussed by the authors.
Abstract: . The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north–south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north–south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.

194 citations


Journal ArticleDOI
TL;DR: In this article, two distinct, computationally inexpensive cloud screening algorithms have been developed for the OCO-2 data set: the A-Band Preprocessor (ABP) and the Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor(IDP).
Abstract: . The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 µm (weak CO2 band) and 2.06 µm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of ≃ 20–25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April–May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the reported uncertainties of version 7 OCO-2 XCO_2 measurements were evaluated and attributed to uncertainties in total column atmospheric CO-2 measurements from the OCO2 instrument and their calculated uncertainties within small regions in which natural CO_2 variability is expected to be small relative to variations imparted by noise or interferences.
Abstract: Evaluating and attributing uncertainties in total column atmospheric CO_2 measurements (XCO_2) from the OCO-2 instrument is critical for testing hypotheses related to the underlying processes controlling XCO_2 and for developing quality flags needed to choose those measurements that are usable for carbon cycle science. Here we test the reported uncertainties of version 7 OCO-2 XCO_2 measurements by examining variations of the XCO_2 measurements and their calculated uncertainties within small regions (∼ 100 km × 10.5 km) in which natural CO_2 variability is expected to be small relative to variations imparted by noise or interferences. Over 39 000 of these small neighborhoods comprised of approximately 190 observations per neighborhood are used for this analysis. We find that a typical ocean measurement has a precision and accuracy of 0.35 and 0.24 ppm respectively for calculated precisions larger than ∼ 0.25 ppm. These values are approximately consistent with the calculated errors of 0.33 and 0.14 ppm for the noise and interference error, assuming that the accuracy is bounded by the calculated interference error. The actual precision for ocean data becomes worse as the signal-to-noise increases or the calculated precision decreases below 0.25 ppm for reasons that are not well understood. A typical land measurement, both nadir and glint, is found to have a precision and accuracy of approximately 0.75 and 0.65 ppm respectively as compared to the calculated precision and accuracy of approximately 0.36 and 0.2 ppm. The differences in accuracy between ocean and land suggests that the accuracy of XCO2 data is likely related to interferences such as aerosols or surface albedo as they vary less over ocean than land. The accuracy as derived here is also likely a lower bound as it does not account for possible systematic biases between the regions used in this analysis.

39 citations


Journal ArticleDOI
TL;DR: In this article, the Tropospheric Emission Spectrometer (TES) on Aura and Infrared Atmospheric Sounding Interferometer (IASI) on MetOp-A together provide a time series of 10 years of free-tropospheric ozone with an overlap of 3 years.
Abstract: . The Tropospheric Emission Spectrometer (TES) on Aura and Infrared Atmospheric Sounding Interferometer (IASI) on MetOp-A together provide a time series of 10 years of free-tropospheric ozone with an overlap of 3 years. We characterise the differences between TES and IASI ozone measurements and find that IASI's coarser vertical sensitivity leads to a small (

14 citations


Proceedings ArticleDOI
TL;DR: CARBO as discussed by the authors is a compact, modular, 15-30° field of view spectrometer that delivers high-precision CO, CH, CO and solar induced chlorophyll fluorescence (SIF) data with weekly global coverage from LEO.
Abstract: Scientific consensus from a 2015 pre-Decadal Survey workshop highlighted the essential need for a wide-swath (mapping) low earth orbit (LEO) instrument delivering carbon dioxide (CO_2), methane (CH_4), and carbon monoxide (CO) measurements with global coverage. OCO-2 pioneered space-based CO_2 remote sensing, but lacks the CH_4, CO and mapping capabilities required for an improved understanding of the global carbon cycle. The Carbon Balance Observatory (CARBO) advances key technologies to enable high-performance, cost-effective solutions for a space-based carbon-climate observing system. CARBO is a compact, modular, 15-30° field of view spectrometer that delivers high-precision CO_2, CH_4, CO and solar induced chlorophyll fluorescence (SIF) data with weekly global coverage from LEO. CARBO employs innovative immersion grating technologies to achieve diffraction-limited performance with OCO-like spatial (2x2 km^2) and spectral (λ/Δλ ≈ 20,000) resolution in a package that is >50% smaller, lighter and more cost-effective. CARBO delivers a 25- to 50-fold increase in spatial coverage compared to OCO-2 with no loss of detection sensitivity. Individual CARBO modules weigh < 20 kg, opening diverse new space-based platform opportunities.

11 citations