scispace - formally typeset
A

Ara A. Asatryan

Researcher at University of Technology, Sydney

Publications -  130
Citations -  2427

Ara A. Asatryan is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Photonic crystal & Scattering. The author has an hindex of 28, co-authored 130 publications receiving 2318 citations. Previous affiliations of Ara A. Asatryan include Russian Academy of Sciences & Yerevan State University.

Papers
More filters
Journal ArticleDOI

Modes of random lasers

Abstract: In conventional lasers, the optical cavity that confines the photons also determines essential characteristics of the lasing modes such as wavelength, emission pattern, directivity, and polarization. In random lasers, which do not have mirrors or a well-defined cavity, light is confined within the gain medium by means of multiple scattering. The sharp peaks in the emission spectra of semiconductor powders, first observed in 1999, has therefore lead to an intense debate about the nature of the lasing modes in these so-called lasers with resonant feedback. We review numerical and theoretical studies aimed at clarifying the nature of the lasing modes in disordered scattering systems with gain. The past decade has witnessed the emergence of the idea that even the low-Q resonances of such open systems could play a role similar to the cavity modes of a conventional laser and produce sharp lasing peaks. We focus here on the near-threshold single-mode lasing regime where nonlinear effects associated with gain saturation and mode competition can be neglected. We discuss in particular the link between random laser modes near threshold and the resonances or quasi-bound (QB) states of the passive system without gain. For random lasers in the localized (strong scattering) regime, QB states and threshold lasing modes were found to be nearly identical within the scattering medium. These studies were later extended to the case of more lossy systems such as random systems in the diffusive regime, where it was observed that increasing the openness of such systems eventually resulted in measurable and increasing differences between quasi-bound states and lasing modes. Very recently, a theory able to treat lasers with arbitrarily complex and open cavities such as random lasers established that the threshold lasing modes are in fact distinct from QB states of the passive system and are better described in terms of a new class of states, the so-called constant-flux states. The correspondence between QB states and lasing modes is found to improve in the strong scattering limit, confirming the validity of initial work in the strong scattering limit.
Journal ArticleDOI

Photonic band structure calculations using scattering matrices.

TL;DR: Band structure calculations of two-dimensional photonic crystals treated as stacks of one-dimensional gratings are considered, and a new, fundamental quantity, the reflection scattering matrix, is derived and is used to deduce the effective dielectric constant of the crystal in the long wavelength limit.
Journal ArticleDOI

Random lasing in weakly scattering systems

TL;DR: In this paper, a detailed experimental and numerical study of random lasing in weakly scattering systems is presented, where the interference of scattered light, which is weak in the passive systems, is greatly enhanced in the presence of high gain, providing coherent and resonant feedback for lasing.
Journal ArticleDOI

Modal analysis of enhanced absorption in silicon nanowire arrays

TL;DR: The absorption of solar radiation by silicon nanowire arrays is analyzed using a new, semi-analytic model, and it is shown that the enhanced absorption can be attributed to a few modes of the array, which couple well to incident light, overlap well with the nanowires, and exhibit strong Fabry-Pérot resonances.
Journal ArticleDOI

Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method.

TL;DR: In this article, a wave propagation and scattering through stacked gratings comprising metallic and dielectric cylinders is presented, where the stack may contain an arbitrary number of gratings, provided that each has a common period.