scispace - formally typeset
Search or ask a question

Showing papers by "Arvin R. Mosier published in 2012"


Journal ArticleDOI
TL;DR: The rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N, and has made possible a top-down estimate of global emissions from agriculture.
Abstract: In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N(2)O). We obtained an N(2)O emission factor (EF) of 3-5%, and applied it to biofuel production. For 'first-generation' biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N(2)O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N(2)O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N(2)O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659-662.). However, by also including soil organic N mineralized following land-use change and NO(x) deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N(2)O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N.

106 citations


Journal ArticleDOI
TL;DR: N demand and removal in grain cropping systems will increase under future CO2 -enriched environments, and current N management practices (fertilizer application and legume incorporation) will need to be revised.
Abstract: Understanding nitrogen (N) removal and replenishment is crucial to crop sustainability under rising atmospheric carbon dioxide concentration ([CO2]). While a significant portion of N is removed in grains, the soil N taken from agroecosystems can be replenished by fertilizer application and N2 fixation by legumes. The effects of elevated [CO2 ]o n N dynamics in grain crop and legume pasture systems were evaluated using meta-analytic techniques (366 observations from 127 studies). The information analysed for non-legume crops included grain N removal, residue C : N ratio, fertilizer N recovery and nitrous oxide (N2O) emission. In addition to these parameters, nodule number and mass, nitrogenase activity, the percentage and amount of N fixed from the atmosphere were also assessed in legumes. Elevated [CO2] increased grain N removal of C3 non-legumes (11%), legumes (36%) and C4 crops (14%). The C : N ratio of residues from C3 non-legumes and legumes increased under elevated [CO2] by 16% and 8%, respectively, but the increase for C4 crops (9%) was not statistically significant. Under elevated [CO2], there was a 38% increase in the amount of N fixed from the atmosphere by legumes, which was accompanied by greater whole plant nodule number (33%), nodule mass (39%), nitrogenase activity (37%) and %N derived from the atmosphere (10%; non-significant). Elevated [CO2] increased the plant uptake of fertilizer N by 17%, and N2O emission by 27%. These results suggest that N demand and removal in grain cropping systems will increase under future CO2-enriched environments, and that current N management practices (fertilizer application and legume incorporation) will need to be revised.

96 citations


Journal ArticleDOI
TL;DR: Variation in N2 fixation ability in response to elevated [CO2] should be used as key trait for selecting cultivars for future climate with respect to meeting the higher N demand driven by a carbon-rich atmosphere.
Abstract: The effect of elevated carbon dioxide (CO2) concentration on symbiotic nitrogen fixation in soybean under open-air conditions has not been reported. Two soybean cultivars (Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35) were grown to maturity under ambient (415 ± 16 μmol mol−1) and elevated (550 ± 17 μmol mol−1) [CO2] at the free-air carbon dioxide enrichment experimental facility in northern China. Elevated [CO2] increased above- and below-ground biomass by 16–18% and 11–20%, respectively, but had no significant effect on the tissue C/N ratio at maturity. Elevated [CO2] increased the percentage of N derived from the atmosphere (%Ndfa, estimated by natural abundance) from 59% to 79% for Zhonghuang 13, and the amount of N fixed from 166 to 275 kg N ha−1, but had no significant effect on either parameter for Zhonghuang 35. These results suggest that variation in N2 fixation ability in response to elevated [CO2] should be used as key trait for selecting cultivars for future climate with respect to meeting the higher N demand driven by a carbon-rich atmosphere.

35 citations