scispace - formally typeset
Search or ask a question

Showing papers by "B. Brett Finlay published in 2005"


Journal ArticleDOI
TL;DR: It is shown that SopB/SigD, an effector with phosphoinositide phosphatase activity, has anti-apoptotic activity in Salmonella-infected epithelial cells, providing new insights into the mechanisms of apoptosis and highlighting how bacterial effectors can intercept signaling pathways to manipulate host responses.

227 citations


Journal ArticleDOI
TL;DR: It is demonstrated that attenuation of intestinal inflammation is accompanied by resolution of typhlitis in the mutant, but not wild-type, infections and that SPI2 is needed for enterocolitis, as well as for systemic disease.
Abstract: Salmonella species cause a wide range of disease in multiple hosts. Salmonella enterica serovar Typhimurium causes self-limited intestinal disease in humans and systemic typhoid-like illness in susceptible mice. The prevailing dogma in murine S. enterica serovar Typhimurium pathogenesis is that distinct virulence mechanisms-Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2)-perform distinct roles in pathogenesis, the former being important for invasion and intestinal disease and the latter important for intracellular survival and systemic persistence and disease. Although evidence from bovine infections has suggested that SPI2 has a role in ileal disease, there is no evidence that SPI2 is important for inflammation in a disease that more closely recapitulates human colitis. Using S. enterica serovar Typhimurium strains that lack functional type III secretion systems, we demonstrate that SPI2 is essential for complete virulence in murine infectious enterocolitis. Using a recently characterized murine model (M. Barthel,S. Hapfelmeier, L. Quintanilla-Martinez, M. Kremer, M. Rohde, M. Hogardt, K. Pfeffer, H. Russmann, and W. D. Hardt, Infect. Immun. 71:2839-2858, 2003), we demonstrate that SPI1 mutants are unable to cause intestinal disease 48 h after infection and that SPI2-deficient bacteria also cause significantly attenuated typhlitis. We show that at the peak of inflammation in the cecum, SPI2 mutants induce diminished intercellular adhesion molecule 1 expression and neutrophil recruitment but that wild-type and mutant Salmonella are similarly distributed in the lumen of the infected organ. Finally, we demonstrate that attenuation of intestinal inflammation is accompanied by resolution of typhlitis in the mutant, but not wild-type, infections. Collectively, these results indicate that SPI2 is needed for enterocolitis, as well as for systemic disease.

213 citations


Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: Crystal packing analysis and molecular modelling indicate that EscJ could form a large 24-subunit ‘ring’ superstructure with extensive grooves, ridges and electrostatic features, and it is proposed that the YscJ/PrgK protein family functions as an essential molecular platform for TTSS assembly.
Abstract: Type III secretion systems (TTSSs) are multi-protein macromolecular ‘machines’ that have a central function in the virulence of many Gram-negative pathogens by directly mediating the secretion and translocation of bacterial proteins (termed effectors) into the cytoplasm of eukaryotic cells1. Most of the 20 unique structural components constituting this secretion apparatus are highly conserved among animal and plant pathogens and are also evolutionarily related to proteins in the flagellar-specific export system. Recent electron microscopy experiments have revealed the gross ‘needle-shaped’ morphology of the TTSS2,3,4, yet a detailed understanding of the structural characteristics and organization of these protein components within the bacterial membranes is lacking. Here we report the 1.8-A crystal structure of EscJ from enteropathogenic Escherichia coli (EPEC), a member of the YscJ/PrgK family whose oligomerization represents one of the earliest events in TTSS assembly5. Crystal packing analysis and molecular modelling indicate that EscJ could form a large 24-subunit ‘ring’ superstructure with extensive grooves, ridges and electrostatic features. Electron microscopy, labelling and mass spectrometry studies on the orthologous Salmonella typhimurium PrgK within the context of the assembled TTSS support the stoichiometry, membrane association and surface accessibility of the modelled ring. We propose that the YscJ/PrgK protein family functions as an essential molecular platform for TTSS assembly.

195 citations


Journal ArticleDOI
TL;DR: It is shown that genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger “arsenal" of novel genes for adaptation than previously thought.
Abstract: Microbial genes that are "novel" (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger "arsenal" of novel genes for adaptation than previously thought.

193 citations


Journal ArticleDOI
TL;DR: The results suggest that SepL and SepD not only are necessary for efficient translocator secretion in A/E pathogens but also control a switch from translocators to effector secretion by sensing certain environmental signals such as low calcium.
Abstract: Human enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and the mouse pathogen Citrobacter rodentium (CR) belong to the family of attaching and effacing (A/E) bacterial pathogens. They possess the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system. These pathogens secrete a number of proteins into culture media, including type III effector proteins and translocators that are required for the translocation of effectors into host cells. Preliminary evidence indicated that the LEE-encoded SepL and Rorf6/SepD may form a molecular switch that controls the secretion of translocators and effectors in CR. Here, we show that SepL and SepD indeed perform this function in A/E pathogens such as EHEC and EPEC. Their sepL and sepD mutants do not secrete translocators but exhibit enhanced secretion of effectors. We demonstrate that SepL and SepD interact with each other and that both SepL and SepD are localized to the bacterial membranes. Furthermore, we demonstrate that culture media influence the type III secretion profile of EHEC, EPEC, and CR and that low-calcium concentrations inhibit secretion of translocators but promote the secretion of effectors, similar to effects on type III secretion by mutations in sepL and sepD. However, the secretion profile of the sepD and sepL mutants is not affected by these culture conditions. Collectively, our results suggest that SepL and SepD not only are necessary for efficient translocator secretion in A/E pathogens but also control a switch from translocator to effector secretion by sensing certain environmental signals such as low calcium.

181 citations


Journal ArticleDOI
TL;DR: A novel ileal loop model is developed for use in calves to analyze the contribution of Salmonella enterica serovar Typhimurium type III secretion systems to disease processes in vivo and delineate novel phenotypes for SPI-1 and SPI-2 mutants in the intestinal phase of bovine and murine salmonellosis.
Abstract: We have developed a novel ileal loop model for use in calves to analyze the contribution of Salmonella enterica serovar Typhimurium type III secretion systems to disease processes in vivo. Our model involves constructing ileal loops with end-to-end anastamoses to restore the patency of the small intestine, thereby allowing experimental animals to convalesce following surgery for the desired number of days. This model overcomes the time constraint imposed by ligated ileal loop models that have precluded investigation of Salmonella virulence factors during later stages of the infection process. Here, we have used this model to examine the enteric disease process at 24 h and 5 days following infection with wild-type Salmonella and mutants lacking the virulence-associated Salmonella pathogenicity island 1 (SPI-1) or SPI-2 type III secretion systems. We show that SPI-2 mutants are dramatically attenuated at 5 days following infection and report a new phenotype for SPI-1 mutants, which induce intestinal pathology in calves similar to wild-type Salmonella in the 5-day ileal loop model. Both of these temporal phenotypes for SPI-1 and SPI-2 mutants were corroborated in a second animal model of enteric disease using streptomycin-pretreated mice. These data delineate novel phenotypes for SPI-1 and SPI-2 mutants in the intestinal phase of bovine and murine salmonellosis and provide working models to further investigate the effector contribution to these pathologies.

174 citations


Journal ArticleDOI
TL;DR: The results indicate that Ler and GrlA induce the expression of each other by, at least in part, counteracting the repression mediated by H-NS, revealing a novel regulatory loop controlling the optimal expression of virulence genes in A/E pathogens.
Abstract: The formation of attaching and effacing (A/E) lesions on intestinal epithelial cells is an essential step in the pathogenesis of human enteropathogenic and enterohemorrhagic Escherichia coli and of the mouse pathogen Citrobacter rodentium. The genes required for the development of the A/E phenotype are located within a pathogenicity island known as the locus of enterocyte effacement (LEE). The LEE-encoded transcriptional regulators Ler, an H-NS-like protein, and GrlA, a member of a novel family of transcriptional activators, positively control the expression of the genes located in the LEE and their corresponding virulence. In this study, we used C. rodentium as a model to study the mechanisms controlling the expression of Ler and GrlA. By deletion analysis of the ler and grlRA regulatory regions and complementation experiments, negative and positive cis-acting regulatory motifs were identified that are essential for the regulation of both genes. This analysis confirmed that GrlA is required for the activation of ler, but it also showed that Ler is required for the expression of grlRA, revealing a novel regulatory loop controlling the optimal expression of virulence genes in A/E pathogens. Furthermore, our results indicate that Ler and GrlA induce the expression of each other by, at least in part, counteracting the repression mediated by H-NS. However, whereas GrlA is still required for the optimal expression of ler even in the absence of H-NS, Ler is not needed for the expression of grlRA in the absence of H-NS. This type of transcriptional positive regulatory loop represents a novel mechanism in pathogenic bacteria that is likely required to maintain an appropriate spatiotemporal transcriptional response during infection.

149 citations


Journal ArticleDOI
TL;DR: In vivo co‐immunoprecipitation studies using CesT‐FLAG containing EPEC lysates demonstrated that CesT interacts with Tir and EscN, consistent with the notion of CesT recruiting Tir to the T3SS, and functionally redefine the role of Ces T in multiple type III effector interactions.
Abstract: Enteropathogenic Escherichia coli (EPEC) is an intestinal attaching and effacing pathogen that utilizes a type III secretion system (T3SS) for the delivery of effectors into host cells The chaperone CesT has been shown to bind and stabilize the type III translocated effectors Tir and Map in the bacterial cytoplasm prior to their delivery into host cells In this study we demonstrate a role for CesT in effector recruitment to the membrane embedded T3SS CesT-mediated effector recruitment was dependent on the presence of the T3SS membrane-associated ATPase EscN EPEC DeltacesT carrying a C-terminal CesT variant, CesT(E142G), exhibited normal cytoplasmic Tir stability function, but was less efficient in secreting Tir, further implicating CesT in type III secretion In vivo co-immunoprecipitation studies using CesT-FLAG containing EPEC lysates demonstrated that CesT interacts with Tir and EscN, consistent with the notion of CesT recruiting Tir to the T3SS CesT was also shown to be required for the efficient secretion of several type III effectors encoded within and outside the locus of enterocyte effacement (LEE) in addition to Tir and Map Furthermore, a CesT affinity column was shown to specifically retain multiple effector proteins from EPEC culture supernatants These findings indicate that CesT is centrally involved in recruiting multiple type III effectors to the T3SS via EscN for efficient secretion, and functionally redefine the role of CesT in multiple type III effector interactions

125 citations


Journal ArticleDOI
TL;DR: It is demonstrated that SPI-2 expression precedes penetration of the intestinal epithelium and may be involved in preparing Salmonella to successfully resist the antimicrobial environment encountered within macrophages.
Abstract: Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes disease in mice that resembles human typhoid. Typhoid pathogenesis consists of distinct phases in the intestine and a subsequent systemic phase in which bacteria replicate in macrophages of the liver and spleen. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2) is a major virulence factor contributing to the systemic phase of typhoid pathogenesis. Understanding how pathogens regulate virulence mechanisms in response to the environment, including different host tissues, is key to our understanding of pathogenesis. A recombinase-based in vivo expression technology system was developed to assess SPI-2 expression during murine typhoid. SPI-2 expression was detectable at very early times in bacteria that were resident in the lumen of the ileum and was independent of active bacterial invasion of the epithelium. We also provide direct evidence for the regulation of SPI-2 by the Salmonella transcription factors ompR and ssrB in vivo. Together these results demonstrate that SPI-2 expression precedes penetration of the intestinal epithelium. This induction of expression precedes any documented SPI-2-dependent phases of typhoid and may be involved in preparing Salmonella to successfully resist the antimicrobial environment encountered within macrophages.

122 citations


Journal ArticleDOI
TL;DR: It is shown that EspA alone is sufficient to form filamentous structures in the absence of other pathogenicity island–encoded proteins, and it is demonstrated that CesA traps EspA in a monomeric state and inhibits its polymerization.
Abstract: The type III secretion system (TTSS) mediates the specific translocation of bacterial proteins into the cytoplasm of eukaryotic cells, a process essential for the virulence of many Gram-negative pathogens. The enteropathogenic Escherichia coli TTSS protein EspA forms a hollow extracellular filament believed to be a molecular conduit for type III protein translocation. Structural analysis of EspA has been hampered by its polymeric nature. We show that EspA alone is sufficient to form filamentous structures in the absence of other pathogenicity island-encoded proteins. CesA is the recently proposed chaperone of EspA, and we demonstrate that CesA traps EspA in a monomeric state and inhibits its polymerization. Crystallographic analysis of the heterodimeric CesA-EspA complex at a resolution of 2.8 A reveals that EspA contains two long a-helices, which are involved in extensive coiled-coil interactions with CesA.

117 citations


Journal ArticleDOI
TL;DR: Findings demonstrate the existence of at least three separate activators of phoP transcription: resting and IFNgamma-stimulated pH-sensitive components, plus a pH-independent component.
Abstract: The objective of these studies was to analyze the role of the ionic environment of phagosomal vacuoles in the control of pathogens by macrophages. Digital imaging and flow cytometry were used to follow the induction of the phoP promoter of Salmonella enterica Typhimurium within live macrophages. Manipulating the Mg2+ concentration within the Salmonella-containing vacuole (SCV) was without effect on the early induction of PhoPQ. Moreover, direct measurement of [Mg2+] within the SCV using nanosensor particles showed that, during this initial period of phoP activation, the concentration of the divalent cation is rapidly regulated and stabilizes around 1 mm. Extrusion of other divalent cations via the Nramp1 efflux pump was similarly ruled out as an important contributor to the activation of the regulon. By contrast, induction of PhoP was greatly attenuated when the pH gradient across the SCV membrane was dissipated. A second, more modest pH-independent component of PhoP induction was unmasked by inhibition of the vacuolar proton pump. This second component was eliminated by pretreatment of cells with IFNgamma, even though the cytokine augmented the overall PhoP response. These findings demonstrate the existence of at least three separate activators of phoP transcription: resting and IFNgamma-stimulated pH-sensitive components, plus a pH-independent component.

Journal ArticleDOI
TL;DR: A class of compounds is identified that can be used as a tool to probe the mechanism(s) that regulates virulence gene expression in EPEC, and it is confirmed that virulence-associated promoters were more sensitive to inhibition by thisclass of compounds.
Abstract: The type III secretion system (TTSS) is a key virulence mechanism of many important gram-negative bacterial pathogens. The TTSS is conserved among different bacterial pathogens, and mutations and deletions to the system significantly decrease virulence, making the TTSS an important potential therapeutic target. We have developed a high-throughput assay to search for inhibitors of the TTSS. We screened a commercial library of 20,000 small molecules for their ability to inhibit type III secretion by enteropathogenic Escherichia coli (EPEC). After discarding compounds that had no effect on secretion, inhibited bacterial growth, and/or caused degradation of EPEC-secreted proteins, the search was focused on a class of compounds that, while not direct inhibitors of type III secretion, inhibit expression of TTSS-related genes and other genes involved in virulence. This class of compounds does not affect bacterial viability or motility, indicating that it is not significantly affecting the expression of essential genes and is specific to virulence-associated genes. Transcriptional fusion assays confirmed that virulence-associated promoters were more sensitive to inhibition by this class of compounds. Overall, we have identified a class of compounds that can be used as a tool to probe the mechanism(s) that regulates virulence gene expression in EPEC.

Journal ArticleDOI
TL;DR: YdgT mutants displayed a biphasic virulence phenotype during in vivo competitive infections that consisted of an early "gain-of-virulence" dependent on SPI-2 activation, followed by attenuation later in infection indicating that proper contextual regulation of SPI-1 by Ydg T is necessary for full virulence during systemic colonization.
Abstract: Salmonella enterica relies on a type III secretion system encoded in Salmonella pathogenicity island-2 (SPI-2) to survive and replicate within macrophages at systemic sites during typhoid. SPI-2 virulence is induced upon entry into macrophages, but the mechanisms of SPI-2 gene control in vivo remain unclear, particularly with regard to negative regulators that control the contextual activation of SPI-2. Here, we identified and characterized YdgT as a negative modulator of the SPI-2 pathogenicity island and established that this negative regulation is central to systemic pathogenesis because ydgT mutants overexpressing typhoid virulence genes were ultimately attenuated during infection. ydgT mutants displayed a biphasic virulence phenotype during in vivo competitive infections that consisted of an early "gain-of-virulence" dependent on SPI-2 activation, followed by attenuation later in infection indicating that proper contextual regulation of SPI-2 by YdgT is necessary for full virulence during systemic colonization. These data suggest that overexpression of virulence-associated type III secretion genes can have an adverse effect on bacterial pathogenesis in vivo.

Journal ArticleDOI
TL;DR: The temperate bacteriophage called Gifsy-1 in S.enterica serovar Typhimurium is investigated and it is shown that the product of the gogB gene encoded within this phage shares similarity with proteins from other Gram-negative pathogens.

Journal ArticleDOI
TL;DR: It is suggested that EspG contributes to the ability of A/E pathogens to establish infection through a modulation of the host cytoskeleton involving transient microtubule destruction and actin polymerization in a manner akin to the Shigella flexneri VirA protein.
Abstract: EspG is a conserved protein encoded by the locus of enterocyte effacement (LEE) of attaching and effacing (A/E) pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli and Citrobacter rodentium. EspG is delivered into infected host cells by a type III secretion system. The role of EspG in virulence has not yet been defined. Here we describe experiments that probe the virulence characteristics and biological activities of EspG in vitro and in vivo. A C. rodentium espG mutant displayed a significantly reduced ability to colonize C57BL/6 mice and to cause colonic hyperplasia. Epitope-tagged EspG was detected in the apical regions of infected colonic epithelial cells in infected mice, partially localizing with another LEE-encoded effector protein, Tir. EspG was found to interact with mammalian tubulin in both genetic screens and gel overlay assays. Binding to tubulin by EspG caused localized microtubule depolymerization, resulting in actin stress fiber formation through an undefined mechanism. Heterologous expression of EspG in yeast resulted in loss of cytoplasmic microtubule structure and function, preventing coordination between bud development and nuclear division. Yeast expressing EspG were also unable to control cortical actin polarity. We suggest that EspG contributes to the ability of A/E pathogens to establish infection through a modulation of the host cytoskeleton involving transient microtubule destruction and actin polymerization in a manner akin to the Shigella flexneri VirA protein.

Book ChapterDOI
TL;DR: Together, these examples represent many key microbial virulence mechanisms that have led to a much deeper understanding of both microbial pathogens and GTPase functions.
Abstract: The ability to modify central host cellular functions is a major advantage to many bacterial pathogens that use such strategies as part of their virulence mechanisms. Small GTPases, including Rho GTPases, make particularly attractive targets for pathogens because of their central roles in modulating cellular functions such as cytoskeletal control. Such modifications of these GTPases can include direct chemical modification of the GTPase or interfacing with some of the regulatory elements associated with GTPase control. Pathogens use these alterations in GTPase functions for a variety of functions, including killing the host cell, mediating bacterial uptake into the host cell (invasion), reprogramming actin to form a lesion in host cells underlying adherent bacteria, to mediate intracellular survival by affecting intracellular trafficking, or to provide polymerized actin mechanisms to propel microbes around inside host cells and into adjacent cells. Collectively, these examples represent many key microbial virulence mechanisms that have led to a much deeper understanding of both microbial pathogens and GTPase functions.

Journal ArticleDOI
TL;DR: New evidence suggests that membrane insertion of the bacterial type III apparatus might turn on a calcium-dependent signaling pathway resulting in phagolysosomal fusion.

Journal ArticleDOI
TL;DR: The application of Saccharomyces cerevisiae as a model to probe the functions of LEE-encoded genes was described and it was concluded that the C-terminal region of the protein is necessary for actin disruption and toxicity, but not for mitochondrial localization.
Abstract: Enteropathogenic Escherichia coli (EPEC) strains cause attaching/effacing lesions in enterocytes through the development of actin-supported pedestals at the site of bacterial adhesion. Pathogenesis requires a type III secretion system (TTSS), which injects into the host cell the intimin receptor, Tir, as well as other effectors called Esps (Escherichia secreted proteins). The genes encoding TTSS structural components and Esps are found within a pathogenicity island called the locus of enterocyte effacement (LEE). This paper describes the application of Saccharomyces cerevisiae as a model to probe the functions of LEE-encoded genes. In a systematic approach, the LEE-encoded translocator and effector proteins were endogenously expressed in yeast and their effects on cell growth, cytoskeletal function and signalling pathways were studied. EspD, EspG and Map inhibited growth by depolarizing the actin cortical cytoskeleton, whereas EspF expression altered the septin cytoskeleton. Specific yeast MAP kinase pathways were activated by EspF, EspG, EspH and Map. The yeast system was used to define functional domains in Map by expressing truncated versions; it was concluded that the C-terminal region of the protein is necessary for actin disruption and toxicity, but not for mitochondrial localization. The utility of the yeast model for functional analyses of EPEC pathogenesis is discussed.

Journal ArticleDOI
TL;DR: The vaccine strategies SARS researchers have used and current SARS animal models used for vaccine evaluation are discussed to develop a new research paradigm for vaccine development for newly emerging and reemerging infectious diseases.
Abstract: The near pandemic caused by the severe acute respiratory syndrome (SARS) emphasized that new and emerging infectious diseases not only continue to plague the world but also how the scientific community can unite to rapidly identify the causative agent and develop strategies such as vaccines to control its spread. The availability of the SARS coronavirus (SARS-CoV) genome sequence paved the way for the identification of recombinant vaccine candidates for SARS. Based on previous successful animal CoV vaccines, vaccinologists focused on the major CoV structural proteins such as the spike (S) and nucleocapsid (N) proteins as vaccine candidates. We will review the vaccine strategies SARS researchers have used and discuss current SARS animal models used for vaccine evaluation. The small number of SARS cases in 2004 has raised questions about whether SARS will return as a pandemic and the cost-effectiveness of testing a SARS vaccine in human clinical trials. Finally, the SARS outbreaks identified several gaps in the response to emerging infectious diseases. The SARS Accelerated Vaccine Initiative (SAVI) was established to provide rapid solutions to a public health emergency and to develop a new research paradigm for vaccine development for newly emerging and reemerging infectious diseases.

Journal ArticleDOI
TL;DR: There is compelling evidence that several intestinal diseases are associated with the translocation of commensal bacteria across the epithelial barrier, and a novel mechanism by which normally non-invasive enteric bacteria breach the intestinal epithelium during periods of inflammation is identified.

Patent
14 Feb 2005
TL;DR: In this paper, compositions and methods for stimulating an immune response against a secreted enterohemorragic Escherichia coli (EHEC) antigen are disclosed, and compositions comprise EHEC cell culture supernatants.
Abstract: Compositions and methods for stimulating an immune response against a secreted enterohemorragic Escherichia coli (EHEC) antigen are disclosed. The compositions comprise EHEC cell culture supernatants.