scispace - formally typeset
Search or ask a question

Showing papers by "Brian J. Rodriguez published in 2022"


Journal ArticleDOI
TL;DR: In this article , a review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations.
Abstract: Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.

10 citations


Journal ArticleDOI
TL;DR: In this article , an atomic force microscopy (AFM)-based electrochemical etching of a highly oriented pyrolytic graphite (HOPG) surface is studied toward the single-atomic-layer lithography of intricate patterns.
Abstract: Atomic force microscopy (AFM)-based electrochemical etching of a highly oriented pyrolytic graphite (HOPG) surface is studied toward the single-atomic-layer lithography of intricate patterns. Electrochemical etching is performed in the water meniscus formed between the AFM tip apex and HOPG surface due to a capillary effect under controlled high relative humidity (~ 75%) at otherwise ambient conditions. The conditions to etch nano-holes, nano-lines, and other intricate patterns are investigated. The electrochemical reactions of HOPG etching should not generate debris due to the conversion of graphite to gaseous CO and CO2 based on etching reactions. However, debris is observed on the etched HOPG surface, and incomplete gasification of carbon occurs during the etching process, resulting in the generation of solid intermediates. Moreover, the applied potential is of critical importance for precise etching, and the precision is also significantly influenced by the AFM tip wear. This study shows that the AFM-based electrochemical etching has the potential to remove the material in a single-atomic-layer precision. This result is likely because the etching process is based on anodic dissolution, resulting in the material removal atom by atom.

6 citations


Journal ArticleDOI
TL;DR: In this article , the authors demonstrate that bio-inspired semiconducting diphenylalanine peptide nanotubes annealed through a reported structural transition can support Raman detection of 10 − 7 M concentrations for a range of molecules including mononucleotides.
Abstract: Semiconducting materials are increasingly proposed as alternatives to noble metal nanomaterials to enhance Raman scattering. We demonstrate that bioinspired semiconducting diphenylalanine peptide nanotubes annealed through a reported structural transition can support Raman detection of 10–7 M concentrations for a range of molecules including mononucleotides. The enhancement is attributed to the introduction of electronic states below the conduction band that facilitate charge transfer to the analyte molecule. These results show that organic semiconductor-based materials can serve as platforms for enhanced Raman scattering for chemical sensing. As the sensor is metal-free, the enhancement is achieved without the introduction of electromagnetic surface-enhanced Raman spectroscopy.

5 citations


Journal ArticleDOI
TL;DR: In this paper , the ionic liquids (ILs), a vast class of organic electrolytes, can finely tune amyloid properties, opening a new landscape in basic science and applications.
Abstract: Protein aggregation into amyloid fibrils has been observed in several pathological conditions and exploited in nanotechnology. It is also key in several biochemical processes. In this work, we show that ionic liquids (ILs), a vast class of organic electrolytes, can finely tune amyloid properties, opening a new landscape in basic science and applications. The representative case of ethylammonium nitrate (EAN) and tetramethyl-guanidinium acetate (TMGA) ILs on lysozyme is considered. First, atomic force microscopy has shown that the addition of EAN and TMGA leads to thicker and thinner amyloid fibrils of greater and lower electric potential, respectively, with diameters finely tunable by IL concentration. Optical tweezers and neutron scattering have shed light on their mechanism of action. TMGA interacts with the protein hydration layer only, making the relaxation dynamics of these water molecules faster. EAN interacts directly with the protein instead, making it mechanically unstable and slowing down its relaxation dynamics.

4 citations


Journal ArticleDOI
TL;DR: In this paper , an amplitude modulation (AM)-AFM technique was used to examine how microscopic morphological developments, such as lactose crystallization, swelling of particles and changes in surface roughness, occur as a function of moisture sorption in skimmed-milk (SMP), milk protein concentrate (MPC) and whey protein isolate (WPI) powders.

3 citations


Journal ArticleDOI
01 May 2022
TL;DR: In this paper , a spheroid-based migration assay, integrated with a fibrillar type I collagen matrix, was implemented for high throughput image acquisition and quantitative analysis, which can be applied to a fully automated imaging and analysis pipeline for the assessment of tumor cell migration with high throughput screening.
Abstract: Cell dissemination during tumor development is a characteristic of cancer metastasis. Dissemination from three-dimensional spheroid models on extracellular matrices designed to mimic tissue-specific physiological microenvironments may allow us to better elucidate the mechanism behind cancer metastasis and the response to therapeutic agents. The orientation of fibrillar collagen plays a key role in cellular processes and mediates metastasis through contact-guidance. Understanding how cells migrate on aligned collagen fibrils requires in vitro assays with reproducible and standardized orientation of collagen fibrils on the macro-to-nanoscale. Herein, we implement a spheroid-based migration assay, integrated with a fibrillar type I collagen matrix, in a manner compatible with high throughput image acquisition and quantitative analysis. The migration of highly proliferating U2OS osteosarcoma cell spheroids onto an aligned fibrillar type I collagen matrix was quantified. Cell dissemination from the spheroid was polarized with increased invasion in the direction of fibril alignment. The resulting area of cell dissemination had an aspect ratio of 1.2 ± 0.1 and an angle of maximum invasion distance of 5° ± 44° relative to the direction of collagen fibril alignment. The assay described here can be applied to a fully automated imaging and analysis pipeline for the assessment of tumor cell migration with high throughput screening.

2 citations



Journal ArticleDOI
TL;DR: In this paper , the performance of single and multifrequency Kelvin probe force microscopy (KPFM) techniques in both air and water is compared and contrasted both off resonance and utilizing the first two eigenmodes of the cantilever, and they conclude that open-loop multifrequency KPFM modes operated with the first harmonic of the electrostatic response on the first eigenmode offer the best performance in liquid environments whilst needing the smallest AC bias for operation.
Abstract: In this paper, we derive and present quantitative expressions governing the performance of single and multifrequency Kelvin probe force microscopy (KPFM) techniques in both air and water. Metrics such as minimum detectable contact potential difference, minimum required AC bias, and signal-to-noise ratio are compared and contrasted both off resonance and utilizing the first two eigenmodes of the cantilever. These comparisons allow the reader to quickly and quantitatively identify the parameters for the best performance for a given KPFM-based experiment in a given environment. Furthermore, we apply these performance metrics in the identification of KPFM-based modes that are most suitable for operation in liquid environments where bias application can lead to unwanted electrochemical reactions. We conclude that open-loop multifrequency KPFM modes operated with the first harmonic of the electrostatic response on the first eigenmode offer the best performance in liquid environments whilst needing the smallest AC bias for operation.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the atomic-scale structure fabrication on Si (100) substrate using atomic force microscopy (AFM) with the aid of electrochemical and mechanical processes in a humid environment and under ambient conditions is studied.
Abstract: In this paper, the atomic-scale structure fabrication on Si (100) substrate using atomic force microscopy (AFM) with the aid of electrochemical and mechanical processes in a humid environment and under ambient conditions is studied. The local oxidation patterns are formed using platinum-coated tips with the aid of bias applied to the tip-substrate junction, and direct removal has been achieved using single crystal diamond tips, enabling the structure fabrication at the atomic and close-to-atomic scale. The depth and height of the etched trenches reached about 1 nm, which provides an approach for the fabrication of atomic-scale electrodes for molecular device development. Furthermore, material removal close to about three silicon atoms (~3.2 Å) has been achieved. This is important in molecular device fabrication. A detailed comparison among the nanopatterns and the material removal over bare and hydrofluoric acid (HF) treated silicon substrates is provided. This comparison is useful for the application of fabricating atomic-scale electrodes needed for the molecular electronic components. A deep understanding of atomic-scale material removal can be pushed to fabricate a single atomic protrusion by removing the neighbouring atoms so that the molecule can be attached to a single atom, thereby the AFM tip and Si substrate could act as the electrodes and the molecule between them as the channel, providing basic transistor actions in a molecular transistor design. In this paper, platinum-coated and single-crystal diamond tips are used to explain the oxide formations and direct material removal, respectively.