scispace - formally typeset
Search or ask a question

Showing papers by "Carel ten Cate published in 2015"


Journal ArticleDOI
TL;DR: A multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait.
Abstract: Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. Music, by contrast, can be defined as a social and cultural construct based on that very musicality. One critical challenge is to delineate the constituent elements of musicality. What biological and cognitive mechanisms are essential for perceiving, appreciating and making music? Progress in understanding the evolution of music cognition depends upon adequate characterization of the constituent mechanisms of musicality and the extent to which they are present in non-human species. We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait.

156 citations


Journal ArticleDOI
TL;DR: Through reviewing laboratory findings on animal auditory perception and behaviour, as well as relevant findings on natural behaviour, there is evidence that both traditional laboratory studies and studies relating to natural behaviour are needed to answer the problem of musicality.
Abstract: In the introduction to this theme issue, Honing et al. suggest that the origins of musicality--the capacity that makes it possible for us to perceive, appreciate and produce music--can be pursued productively by searching for components of musicality in other species. Recent studies have highlighted that the behavioural relevance of stimuli to animals and the relation of experimental procedures to their natural behaviour can have a large impact on the type of results that can be obtained for a given species. Through reviewing laboratory findings on animal auditory perception and behaviour, as well as relevant findings on natural behaviour, we provide evidence that both traditional laboratory studies and studies relating to natural behaviour are needed to answer the problem of musicality. Traditional laboratory studies use synthetic stimuli that provide more control than more naturalistic studies, and are in many ways suitable to test the perceptual abilities of animals. However, naturalistic studies are essential to inform us as to what might constitute relevant stimuli and parameters to test with laboratory studies, or why we may or may not expect certain stimulus manipulations to be relevant. These two approaches are both vital in the comparative study of musicality.

62 citations


Journal ArticleDOI
TL;DR: It is concluded that zebra finches show evidence of simple rule abstraction related to positional learning, suggesting stimulus-bound generalization, but found no evidence for a more abstract rule generalization.
Abstract: ing syntactic rules is critical to human language learning. It is debated whether this ability, already present in young infants, is human- and language specific or can also be found in non-human animals, indicating it may arise from more general cognitive mechanisms. Current studies are often ambiguous and few have directly compared rule learning by humans and non-human animals. In a series of discrimination experiments, we presented zebra finches and human adults with comparable training and tests with the same artificial stimuli consisting of XYX and XXY structures, in which X and Y were zebra finch song elements. Zebra finches readily discriminated the training stimuli. Some birds also discriminated novel stimuli when these were composed of familiar element types, but none of the birds generalized the discrimination to novel element types. We conclude that zebra finches show evidence of simple rule abstraction related to positional learning, suggesting stimulus-bound generalization, but found no evidence for a more abstract rule generalization. This differed from the human adults, who categorized novel stimuli consisting of novel element types into different groups according to their structure. The limited abilities for rule abstraction in zebra finches may indicate what the precursors of more complex abstraction as found in humans may have been like.

45 citations


Journal ArticleDOI
TL;DR: Whether zebra finches can use transitional cues to distinguish artificially constructed strings of song elements is examined using a Go-Nogo design and shows that they can attend to both transitional and positional cues and that their sequential coding strategies can be biased toward transitional cues depending on the learning context.

34 citations


Journal ArticleDOI
TL;DR: It is found that, although plausible, the current evidence is insufficiently strong to conclude that directional asymmetries in vowel perception are specific to humans, or that non-human animals can use voice characteristics to recognize human individuals.
Abstract: The extent to which human speech perception evolved by taking advantage of predispositions and pre-existing features of vertebrate auditory and cognitive systems remains a central question in the evolution of speech. This paper reviews asymmetries in vowel perception, speaker voice recognition, and speaker normalization in non-human animals – topics that have not been thoroughly discussed in relation to the abilities of non-human animals, but are nonetheless important aspects of vocal perception. Throughout this paper we demonstrate that addressing these issues in non-human animals is relevant and worthwhile because many non-human animals must deal with similar issues in their natural environment. That is, they must also discriminate between similar-sounding vocalizations, determine signaler identity from vocalizations, and resolve signaler-dependent variation in vocalizations from conspecifics. Overall, we find that, although plausible, the current evidence is insufficiently strong to conclude that directional asymmetries in vowel perception are specific to humans, or that non-human animals can use voice characteristics to recognize human individuals. However, we do find some indication that non-human animals can normalize speaker differences. Accordingly, we identify avenues for future research that would greatly improve and advance our understanding of these topics.

31 citations


Journal ArticleDOI
TL;DR: The results suggest that zebra finches distinguish the different stimuli by learning specific local temporal features of each individual stimulus rather than attending to the global structure of the stimuli, i.e., to the temporal regularity.

26 citations


Journal ArticleDOI
TL;DR: It is indicated that pauses in strings of song elements aid song discrimination and memorization of co-occurring element groups.
Abstract: When learning a language, it is crucial to know which syllables of a continuous sound string belong together as words. Human infants achieve this by attending to pauses between words or to the co-occurrence of syllables. It is not only humans that can segment a continuous string. Songbirds learning their song tend to copy ‘chunks’ from one or more tutors’ songs and combine these into their own song. In the tutor songs, these chunks are often separated by pauses and a high co-occurrence of elements, suggesting that these features affect chunking and song learning. We examined experimentally whether the presence of pauses and element co-occurrence affect the ability of adult zebra finches to discriminate strings of song elements. Using a go/no-go design, two groups of birds were trained to discriminate between two strings. In one group (Pause-group), pauses were inserted between co-occurring element triplets in the strings, and in the other group (No-pause group), both strings were continuous. After making a correct discrimination, an individual proceeded to a reversal training using string segments. Segments were element triplets consistent in co-occurrence, triplets that were partly consistent in composition and triplets consisting of elements that did not co-occur in the strings. The Pause-group was faster in discriminating between the two strings. This group also responded differently to consistent triplets in the reversal training, compared to inconsistent triplets. The No-pause group did not differentiate among the triplet types. These results indicate that pauses in strings of song elements aid song discrimination and memorization of co-occurring element groups.

20 citations


Journal ArticleDOI
TL;DR: This study is the first to provide evidence for what might be a species-shared auditory bias that may supersede speaker-related information during vowel categorization, and provides behavioral evidence contradicting a prior hypothesis that accommodation of speaker differences is achieved via the use of formant ratios.
Abstract: Different speakers produce the same speech sound differently, yet listeners are still able to reliably identify the speech sound. How listeners can adjust their perception to compensate for speaker differences in speech, and whether these compensatory processes are unique only to humans, is still not fully understood. In this study we compare the ability of humans and zebra finches to categorize vowels despite speaker variation in speech in order to test the hypothesis that accommodating speaker and gender differences in isolated vowels can be achieved without prior experience with speaker-related variability. Using a behavioral Go/No-go task and identical stimuli, we compared Australian English adults' (naive to Dutch) and zebra finches' (naive to human speech) ability to categorize / I/ and /e/ vowels of an novel Dutch speaker after learning to discriminate those vowels from only one other speaker. Experiments 1 and 2 presented vowels of two speakers interspersed or blocked, respectively. Results demonstrate that categorization of vowels is possible without prior exposure to speaker-related variability in speech for zebra finches, and in non-native vowel categories for humans. Therefore, this study is the first to provide evidence for what might be a species-shared auditory bias that may supersede speaker-related information during vowel categorization. It additionally provides behavioral evidence contradicting a prior hypothesis that accommodation of speaker differences is achieved via the use of formant ratios. Therefore, investigations of alternative accounts of vowel normalization that incorporate the possibility of an auditory bias for disregarding inter-speaker variability are warranted.

10 citations