scispace - formally typeset
Search or ask a question

Showing papers by "Chao Jia published in 2017"


Journal ArticleDOI
TL;DR: The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications.
Abstract: Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm-2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications.

616 citations


Journal ArticleDOI
TL;DR: The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water and has a high solar steam efficiency under 1 sun illumination, among the best compared with other reported evaporators.
Abstract: Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m-2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation.

511 citations


Journal ArticleDOI
TL;DR: The tree-inspired design offers an inexpensive and scalable solar energy harvesting and steam generation technology that can provide clean water globally, especially for rural or remote areas where water is not only scarce but also limited by water extraction materials and methods.
Abstract: The solar steam process, akin to the natural water cycle, is considered to be an attractive approach to address water scarcity issues globally. However, water extraction from groundwater, for example, has not been demonstrated using these existing technologies. Additionally, there are major unaddressed challenges in extracting potable water from seawater including salt accumulation and long-term evaporation stability, which warrant further investigation. Herein, a high-performance solar steam device composed entirely of natural wood is reported. The pristine, natural wood is cut along the transverse direction and the top surface is carbonized to create a unique bilayer structure. This tree-inspired design offers distinct advantages for water extraction, including rapid water transport and evaporation in the mesoporous wood, high light absorption (≈99%) within the surface carbonized open wood channels, a low thermal conductivity to avoid thermal loss, and cost effectiveness. The device also exhibits long-term stability in seawater without salt accumulation as well as high performance for underground water extraction. The tree-inspired design offers an inexpensive and scalable solar energy harvesting and steam generation technology that can provide clean water globally, especially for rural or remote areas where water is not only scarce but also limited by water extraction materials and methods.

443 citations


Journal ArticleDOI
15 Nov 2017-Joule
TL;DR: In this article, the mesostructures of several natural wood materials as well as their thermal conductivities and mechanical properties were investigated for high-efficiency solar steam generation based on natural wood.

330 citations


Journal ArticleDOI
TL;DR: In this article, a jellyfish-like solar steam generator that consists of the porous carbon black/graphene oxide (CB/GO) composite layer (body), aligned GO pillars (tentacles) and expanded polystyrene (EPS) matrix was designed.

291 citations


Journal ArticleDOI
TL;DR: This work reports a remarkably facile and effective approach to fabricating anisotropic transparent films directly from wood, and reveals the dependence of the film mechanical properties on the alignment of cellulose nanofibers through the film thickness direction.
Abstract: Transparent films or substrates are ubiquitously used in photonics and optoelectronics, with glass and plastics as traditional choice of materials. Transparent films made of cellulose nanofibers are reported recently. However, all these films are isotropic in nature. This work, for the first time, reports a remarkably facile and effective approach to fabricating anisotropic transparent films directly from wood. The resulting films exhibit an array of exceptional optical and mechanical properties. The well-aligned cellulose nanofibers in natural wood are maintained during delignification, leading to an anisotropic film with high transparency (≈90% transmittance) and huge intensity ratio of transmitted light up to 350%. The anisotropic film with well-aligned cellulose nanofibers has a mechanical tensile strength of up to 350 MPa, nearly three times of that of a film with randomly distributed cellulose nanofibers. Atomistic mechanics modeling further reveals the dependence of the film mechanical properties on the alignment of cellulose nanofibers through the film thickness direction. This study also demonstrates guided liquid transport in a mesoporous, anisotropic wood film and its possible application in enabling new nanoelectronic devices. These unique and highly desirable properties of the anisotropic transparent film can potentially open up a range of green electronics and nanofluidics.

180 citations


Journal ArticleDOI
TL;DR: In this article, a novel anisotropic paper material possessing high mechanical flexibility and fantastic optical properties with both high transmittance and high haze was developed via a simple yet effective "top-down" approach by directly shear pressing the delignified wood material.

103 citations


Journal ArticleDOI
TL;DR: In this paper, Nitrogen and oxygen-codoped carbon nanospheres were prepared by adopting sodium alginate (SA) as the carbon precursor in the presence of polyaniline (PANI) through direct carbonization process.

98 citations


Journal ArticleDOI
TL;DR: The highly anisotropic metallic wood serves as an example for further anisotrop materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higherAnisotropic ratios, allowing them to be implemented in a variety of applications.
Abstract: Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well-aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ|| /σ⊥ ) in the order of 1011 , and anisotropic thermal conductivity (κ|| /κ⊥ ) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications.

74 citations


Journal ArticleDOI
TL;DR: In this article, the authors fabricated cellulose nanocrystals from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP), and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation.
Abstract: We fabricated cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP) and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation (for CNFs). The process was green as acid can be easily recovered, and the prepared cellulose nanomaterials were carboxylated and thermally stable. In detail, the CNC yield from the different materials was similar. After hydrolysis, the DP of the cellulose materials decreased substantially, whereas the mechanical fibrillation of the cellulosic solid residues (CSRs) did not dramatically reduce the DP of cellulose. CNCs with different aspect ratios were produced from different starting materials by oxalic acid hydrolysis. The CNCs and CNFs obtained from BEP and QFP possessed more uniform dimensions than those from SDP. On the other hand, CNFs derived from SDP presented the best suspension stability. FTIR analyses verified esterification of cellulose by oxalic acid hydrolysis. The results from both XRD and Raman spectroscopy indicated that whereas XRD crystallinity of CNCs from BEP and QFP did not change significantly, there was some change in Raman crystallinity of these samples. Raman spectra of SDP CNCs indicated that the acid hydrolysis preferably removed cellulose I portion of the samples and therefore the CNCs became cellulose II enriched. TGA revealed that the CNCs obtained from QFP exhibited higher thermal stability compared to those from BEP and SDP, and all the CNCs possessed better thermal stability than that of CNCs from sulfuric acid hydrolysis. The excellent properties of prepared cellulose nanomaterials will be conducive to their application in different fields.

74 citations


Journal ArticleDOI
TL;DR: Versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp and show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield.
Abstract: Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

Journal ArticleDOI
TL;DR: A novel, cellulosic biomass-material-blended polyvinylidene fluoride separator that was prepared using a simple nonsolvent-induced phase separation technique formed a microporous composite separator with reduced crystallinity, uniform pore size distribution, superior thermal tolerance, and enhanced electrolyte wettability and dielectric and mechanical properties.
Abstract: Safety issues are critical barriers to large-scale energy storage applications of lithium-ion batteries (LIBs) Using an ameliorated, thermally stable, shutdown separator is an effective method to overcome the safety issues Herein, we demonstrate a novel, cellulosic biomass-material-blended polyvinylidene fluoride separator that was prepared using a simple nonsolvent-induced phase separation technique This process formed a microporous composite separator with reduced crystallinity, uniform pore size distribution, superior thermal tolerance, and enhanced electrolyte wettability and dielectric and mechanical properties In addition, the separator has a superior capacity retention and a better rate capability compared to the commercialized microporous polypropylene membrane This fascinating membrane was fabricated via a relatively eco-friendly and cost-effective method and is an alternative, promising separator for high-power LIBs

Journal ArticleDOI
01 Jun 2017
TL;DR: In this paper, carbon nanotubes/5-amino-1H-tetrazole composites were prepared by ultrasonic resonance method and the appearance characteristics and thermal properties of composites are analyzed by scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetry (TG) and differential scanning calorimeter (DSC).
Abstract: Carbon nanotubes were prepared in large quantities by fluidized bed method and nitrogen-doped carbon nanotubes were prepared by chemical vapor deposition method. Carbon nanotubes/5-amino-1H-tetrazole composites were prepared by ultrasonic resonance method. The appearance characteristics and thermal properties of composites were analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetry (TG) and differential scanning calorimeter (DSC).