scispace - formally typeset
Search or ask a question

Showing papers by "Chiao-Yao She published in 2007"


Journal ArticleDOI
TL;DR: In this article, the presence of a transient planetary wave in the mesosphere was investigated by using the NCAR thermosphere ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) and comparing model results with the lidar, SABER, and TIMED Doppler Interferometer (TIDI) measurements.
Abstract: Examination of the simultaneous temperature measurement from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, not only confirms the existence of the inversion layer but also reveals the global nature of the inversion, suggesting the presence of a transient planetary wave in the mesosphere. The large tidal variability, therefore, is probably a consequence of the interaction between the transient planetary wave and tides. This possibility is investigated by using the NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) and by comparing model results with the lidar, SABER, and TIMED Doppler Interferometer (TIDI) measurements. With a large transient planetary wave specified at the model lower boundary, the model is able to produce strong diurnal tidal variability comparable to that from the lidar observation, and the modeled temperature inversion is similar to that from the SABER measurement. The model results suggest that the planetary/tidal wave interaction excites nonmigrating tides and modulates the gravity modes and/or the rotational modes of the diurnal migrating tide. Among the nonmigrating tides, the diurnal zonally symmetric (S = 0) component is the strongest, and its interaction with the planetary wave leads to a strong diurnal eastward wave number 1 component.

55 citations


Journal ArticleDOI
TL;DR: Satellite observations of the NaD dayglow at 589 nm provide a global database for the climatology of the mesospheric sodium layer as discussed by the authors, and more than five years of NaD limb observations are available from satellite data.
Abstract: Satellite observations of the Na D dayglow at 589 nm provide a global database for the climatology of the mesospheric sodium layer. More than five years of Na D limb observations are available from ...

37 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported that the sodium lidar in Fort Collins, CO (40.6 N, 105 W) measured an extremely strong sporadic sodium layer lasting from 03:30 to 05:00 UT with several weaker layers later in the night at 06:00 and 09:00 UTC.
Abstract: . On the night of 2 June 2002, the sodium lidar in Fort Collins, CO (40.6 N, 105 W) measured an extremely strong sporadic sodium layer lasting from 03:30 to 05:00 UT with several weaker layers later in the night at 06:00 and 09:00 UT. There is a double layer structure with peaks at 101 and 104 km. The peak sodium density was 21 000 atoms/cm3 with a column abundance of up to twice that of the normal sodium layer. The peak density was 500 times greater than the typical density at that altitude. The sporadic layer abundance and strength factor were higher than any reported in the literature. The two lidar beams, separated by 70 km at this altitude, both measured 0.6 h periodicities in the abundance, but out of phase with each other by 0.3 h. There is also evidence for strong wave activity in the lidar temperatures and winds. The NOAA ionosonde in Boulder, CO (40.0 N, 105 W) measured a critical frequency (foEs) of 14.3 MHz at 03:00 UT on this night, the highest value anytime during 2002. The high values of total ion density inferred means that Na+ fraction must have been only a few percent to explain the neutral Na layer abundances. The Bear Lake, Utah (41.9 N, 111.4 W) dynasonde also measured intense Es between 02:00 and 05:00 UT and again from 06:00 to 08:00 UT about 700 km west of the lidar, with most of the ionograms during these intervals measuring Es up to 12 MHz, the limit of the ionosonde sweep. Other ionosondes around North America on the NGDC database measured normal foEs values that night, so it was a localized event within North America. The peak of Es activity observed in Europe during the summer of 2002 occurred on 4 June. The observations are consistent with the current theories where a combination of wind shears and long period waves form and push downward a concentrated layer of ions, which then chemically react and form a narrow layer of sodium atoms.

33 citations


Journal ArticleDOI
TL;DR: Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes-Mie lidar with three frequency analyzers with nearly the same maximum transmission of ~80% that could be fielded at different wavelengths is analytically considered.
Abstract: Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes-Mie lidar with three frequency analyzers with nearly the same maximum transmission of ~80% that could be fielded at different wavelengths is analytically considered. These frequency analyzers are (a) a double-edge Fabry-Perot interferometer (FPI) at 1064 nm (IR-FPI), (b) a double-edge Fabry-Perot interferometer at 355 nm (UV-FPI), and (c) an iodine vapor filter (IVF) at 532 nm with two different methods, using either one absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF). The effect of the backscattered aerosol mixing ratio, R(b), defined as the ratio of the aerosol volume backscatter coefficient to molecular volume backscatter coefficient, on LOS wind uncertainty is discussed. Assuming a known aerosol mixing ratio, R(b), and 100,000 photons owing to Cabannes scattering to the receiver, in shot-noise-limited detection without sky background, the LOS wind uncertainty of the UV-FPI in the aerosol-free air (R(b)=0), is lower by ~16% than that of de-IVF, which has the lowest uncertainty for R(b) between 0.02 and 0.08; for R(b)>0.08, the IR-FPI yielded the lowest wind uncertainty. The wind uncertainty for se-IVF is always higher than that of de-IVF, but by less than a factor of 2 under all aerosol conditions, if the split between the reference and measurement channels is optimized. The design flexibility, which allows the desensitization of either aerosol or molecular scattering, exists only with the FPI system, leading to the common practice of using IR-FPI for the planetary boundary layer and using UV-FPI for higher altitudes. Without this design flexibility, there is little choice but to use a single wavelength IVF system at 532 nm for all atmospheric altitudes.

29 citations


Journal ArticleDOI
TL;DR: In this paper, the Lomb spectrum analysis of the raw dataset revealed that a gravity wave with 1.5 hr period was significant between 0500 and 0900 UT, but blurred after 0600 UT, suggesting the transfer of wave energy and momentum from wave field to mean flow.
Abstract: : On the night of December 3rd, 2004 (UT day 338), we observed a significant acceleration of horizontal wind near 100 km between 0900 and 0915 UT accompanied by a temperature cooling at the same altitude and warming below it. The Lomb spectrum analysis of the raw dataset revealed that a gravity wave with 1.5 hr period was significant between 0500 and 0900 UT, but blurred after 0900 UT, suggesting the transfer of wave energy and momentum from wave field to mean flow. Most likely, this observed phenomenon is due to the breaking of an upward propagating gravity wave with an apparent period of 1.5 hr. Using linear saturation theory and assuming a monochromatic wave packet, we estimated the characteristics of breaking gravity wave, eddy diffusion coefficient, and a simple relation between Prandtl number and turbulence localization measure when the wave is breaking, from the experimentally determined heating rate, horizontal wind acceleration, and background temperature and winds.

28 citations


Journal ArticleDOI
TL;DR: In this article, three airglow temperature photometers with cooled-CCD detectors are used to measure rotational temperatures using the emissions of OH and O2 near the mesopause region (altitude: 80s-100 km).
Abstract: We have developed three airglow temperature photometers with cooled-CCD detectors. The photometers measure rotational temperatures using the airglow emissions of OH and O2 near the mesopause region (altitude: 80s-100 km). The photometers also measure six other airglow and auroral lines at wavelengths of 557.7, 630.0, 777.4, 589.3, 427.8, and 486.1 nm. The CCD detectors are used to distinguish the emission lines in these airglow bands, similarly to those used by the Spectral Airglow Temperature Imagers (SATI). In this paper, we describe the configuration of the photometers, their calibration, the data processing to extract rotational temperatures and emission intensities from the measured airglow spectra, as well as the initial deployment at Platteville, Colorado (40.2°N, 255.3°E), when their observations were compared with the concurrent and nearly collocated observations by a sodium lidar. We obtain a good correlation and some systematic difference of temperatures from the photometers and the lidar, and discuss possible causes of the temperature difference.

17 citations


Journal ArticleDOI
TL;DR: It is found that the lowest wind uncertainty at low wind speeds in aerosol-free air is still with UV- FPI, ~32% lower than with de-IVF, and the IR-FPI outperforms all other methods.
Abstract: Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes- Mie lidar with three frequency analyzers, two double-edge Fabry-Perot interferometers, one at 1064 nm (IR-FPI) and another at 355 nm (UV-FPI), as well as an iodine vapor filter (IVF) at 532 nm, utilizing either a single absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF), was considered in a companion paper [Appl. Opt. 46, 4434 (2007)], assuming known atmospheric temperature and aerosol mixing ratio, Rb. The effects of temperature and aerosol variations on the uncertainty of LOS wind measurements are investigated and it is found that while the effect of temperature variation is small, the variation in Rb can cause significant errors in wind measurements with IVF systems. Thus the means to incorporate a credible determination of Rb into the wind measurement are presented as well as an assessment of the impact on wind measurement uncertainty. Unlike with IVF methods, researchers can take advantage of design flexibility with FPI methods to desensitize either molecular scattering for IR-FPI or aerosol scattering for UV-FPI. The additional wind measurement uncertainty caused by Rb variation with FPI methods is thus negligible for these configurations. Assuming 100,000 photons from Cabannes scattering, and accounting for the Rb measurement incorporated into the IVF method in this paper, it is found that the lowest wind uncertainty at low wind speeds in aerosol-free air is still with UV-FPI, ∼32% lower than with de-IVF. For 0.05 0.07, the IR-FPI outperforms all other methods. In addition to LOS wind uncertainty comparison under high wind speed conditions, the need of an appropriate and readily available narrowband filter for operating the wind lidar at visible wavelengths under sunlit condition is discussed; with such a filter the degradation of LOS wind measurement attributable to clear sky background is estimated to be 5% or less for practical lidar systems.

14 citations


Journal ArticleDOI
TL;DR: This article used laser-induced fluorescence to assess temperature and wind in a largely unstudied layer of the Earth's atmosphere, and their results are crucial to our understanding of solar-terrestrial relations and lay the groundwork for studies of global warming and atmospheric turbulence.
Abstract: Scientists are using laser-induced fluorescence to assess temperature and wind in a largely unstudied layer of the Earth's atmosphere. Their results are crucial to our understanding of solar-terrestrial relations and lay the groundwork for studies of global warming and atmospheric turbulence.

8 citations