scispace - formally typeset
Search or ask a question

Showing papers by "Christian Ehnholm published in 2005"


Journal ArticleDOI
TL;DR: The inducible ORP2/HeLa cells do not show down-regulation of cholesterol esterification, suggesting that this effect represents an adaptive response to long-term cholesterol depletion in the CHO cell model, and evidence that OrP2 binds PtdIns(3,4,5)P(3) and enhances endocytosis, phenomena that are probably interconnected.
Abstract: ORP2 [OSBP (oxysterol-binding protein)-related protein 2] belongs to the 12-member mammalian ORP gene/protein family. We characterize in the present study the effects of inducible ORP2 overexpression on cellular cholesterol metabolism in HeLa cells and compare the results with those obtained for CHO cells (Chinese-hamster ovary cells) that express ORP2 constitutively. In both cell systems, the prominent phenotype is enhancement of [14C]cholesterol efflux to all extracellular acceptors, which results in a reduction of cellular free cholesterol. No change was observed in the plasma membrane cholesterol content or distribution between raft and non-raft domains upon ORP2 expression. However, elevated HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity and LDL (low-density lipoprotein) receptor expression, as well as enhanced transport of newly synthesized cholesterol to a cyclodextrin-accessible pool, suggest that the ORP2 expression stimulates transport of cholesterol out of the endoplasmic reticulum. In contrast with ORP2/CHO cells, the inducible ORP2/HeLa cells do not show down-regulation of cholesterol esterification, suggesting that this effect represents an adaptive response to long-term cholesterol depletion in the CHO cell model. Finally, we provide evidence that ORP2 binds PtdIns(3,4,5)P(3) and enhances endocytosis, phenomena that are probably interconnected. Our results suggest a function of ORP2 in both cholesterol trafficking and control of endocytic membrane transport.

86 citations


Journal ArticleDOI
01 Jun 2005-Methods
TL;DR: In this chapter, two radiometric PLTP activity assays are described: (i) exogenous, lipoprotein-independent phospholipid transfer assay and (ii) endogenous, lipOProtein-dependent phospholIPid transfer transfer assay.

72 citations


Journal ArticleDOI
TL;DR: Human tear fluid contains catalytically active PLTP protein, which resembles the active form of PLTP present in plasma, and may play a role in the formation of the tear film by supporting phospholipid transfer.
Abstract: The human tear fluid film consists of a superficial lipid layer, an aqueous middle layer, and a hydrated mucin layer located next to the corneal epithelium. The superficial lipid layer protects the eye from drying and is composed of polar and neutral lipids provided by the meibomian glands. Excess accumulation of lipids in the tear film may lead to drying of the corneal epithelium. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. To gain insight into the formation of tear film, we investigated whether PLTP and CETP are present in human tear fluid. Tear fluid samples were collected with microcapillaries. The presence of PLTP and CETP was studied in tear fluid by Western blotting, and the PLTP concentration was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. Size-exclusion and heparin-affinity chromatography assessed the molecular form of PLTP. PLTP is present in tear fluid, whereas CETP is not. Quantitative assessment of PLTP by ELISA indicated that the PLTP concentration in tear fluid, 10.9 +/- 2.4 microg/mL, is about 2-fold higher than that in human plasma. PLTP-facilitated phospholipid transfer activity in tears, 15.1 +/- 1.8 micromol mL(-)(1) h(-)(1), was also significantly higher than that measured in plasma. Inactivation of PLTP by heat treatment (+58 degrees C, 60 min) or immunoinhibition abolished the phospholipid transfer activity in tear fluid. Size-exclusion chromatography of tear fluid indicated that PLTP eluted in a position corresponding to a size of 160-170 kDa. Tear fluid PLTP was quantitatively bound to Heparin-Sepharose and could be eluted as a single peak by 0.5 M NaCl. These data indicate that human tear fluid contains catalytically active PLTP protein, which resembles the active form of PLTP present in plasma. The results suggest that PLTP may play a role in the formation of the tear film by supporting phospholipid transfer.

43 citations


Journal ArticleDOI
TL;DR: Observations suggest that PLTP is capable of interacting with apoE, apoA-I, and apOA-IV, and that these interactions regulate PLTP-activity levels in plasma.

37 citations


Journal ArticleDOI
TL;DR: The hypothesis that impaired RCT is one mechanism behind the increased risk for CHD in subjects with familial low HDL is supported.

34 citations