scispace - formally typeset
Search or ask a question

Showing papers by "Detlef Weigel published in 2004"


Journal ArticleDOI
TL;DR: The role of JAGGED, a gene that encodes a protein with a single C2H2 zinc-finger domain, in controlling the morphogenesis of lateral organs in Arabidopsis thaliana is characterized and it is shown that J AGGED suppresses the premature differentiation of tissues, which is necessary for the formation of the distal region.
Abstract: Position-dependent regulation of growth is important for shaping organs in multicellular organisms. We have characterized the role of JAGGED, a gene that encodes a protein with a single C2H2 zinc-finger domain, in controlling the morphogenesis of lateral organs in Arabidopsis thaliana. Loss of JAGGED function causes organs to have serrated margins. In leaves, the blade region is most severely affected. In sepals, petals and stamens, the strongest defects are seen in the distal regions. By monitoring cell-cycle activity in developing petals with the expression of HISTONE 4, we show that JAGGED suppresses the premature differentiation of tissues, which is necessary for the formation of the distal region. The localization of defects overlaps with the expression domain of JAGGED, which is restricted to the growing regions of lateral organs. JAGGED expression is notably absent from the cryptic bract, the remnant of a leaf-like organ that subtends the flower in many species but does not normally develop in wild-type Arabidopsis. If misexpressed, JAGGED can induce the formation of bracts, suggesting that the exclusion of JAGGED from the cryptic bract is a cause of bractless flowers in Arabidopsis.

286 citations


Journal Article
TL;DR: It is suggested that MFT functions as a floral inducer and that it may act redundantly in determination of flowering time in Arabidopsis.
Abstract: MFT (MOTHER OF FT AND TFL1) is a member of a gene family that includes two important regulators, FT (FLOWERING LOCUS T) and TFL1 (TERMINAL FLOWER 1), in determination of flowering time in Arabidopsis. Although the functions of FT and TFL1 are assigned in the family, the roles of other members are largely unknown. Especially the sequence of MFT is homologous to both FT and TFL1, which act as a floral promoter and an inhibitor, respectively, making it difficult to predict the role of MFT. We performed genetic analyses of MFT to understand its role in floral development. Constitutive expression of MFT led to slightly early flowering under long days. However, a T-DNA insertion allele of MFT did not show obvious phenotype. Further genetic analyses with the loss-of-function alleles of FT, TFL1, and ATC (Arabidopsis Thaliana CENTRORADIALIS homologue) showed that a decrease of MFT activity did not enhance the phenotypes of the single mutants. Taken together, we suggest that MFT functions as a floral inducer and that it may act redundantly in determination of flowering time in Arabidopsis.

142 citations


Journal ArticleDOI
01 Nov 2004-Genetics
TL;DR: It is demonstrated that LD could have been used to fine-map the FRI gene to a roughly 30-kb region and to identify two common loss-of-function alleles, and the effect of population structure in causing false positives was evident.
Abstract: The feasibility of using linkage disequilbrium (LD) to fine-map loci underlying natural variation in Arabidopsis thaliana was investigated by looking for associations between flowering time and marker polymorphism in the genomic regions containing two candidate genes, FRI and FLC, both of which are known to contribute to natural variation in flowering. A sample of 196 accessions was used, and polymorphism was assessed by sequencing a total of 17 roughly 500-bp fragments. Using a novel Bayesian algorithm based on haplotype similarity, we demonstrate that LD could have been used to fine-map the FRI gene to a roughly 30-kb region and to identify two common loss-of-function alleles. Interestingly, because of genetic heterogeneity, simple single-marker associations would not have been able to map FRI with nearly the same precision. No clear evidence for previously unknown alleles at either locus was found, but the effect of population structure in causing false positives was evident.

81 citations


Journal ArticleDOI
TL;DR: A new system that provides both temporal and spatial control for transgene expression that combines the advantages of its two constituent components: temporally regulated activity of the ethanol-dependent AlcR transcription factor, and tissue specificity of a plant promoter is described.
Abstract: Temporally and spatially regulated induction of gene expression is an important tool of genetic analysis. In plants, several systems are available for spatially unregulated induction of gene expression, or for spatially regulated expression. Here, we describe a new system that provides both temporal and spatial control for transgene expression. It combines the advantages of its two constituent components: temporally regulated activity of the ethanol-dependent AlcR transcription factor, and tissue specificity of a plant promoter. As a proof of principle, transgenic lines were developed in which the promoter of the meristem identity gene LEAFY (LFY) provided flower-specific expression of the AlcR activator. Tissue-specific activity of AlcR was confirmed with a responder in which the beta-glucuronidase (GUS) reporter was under the control of the alcA response element. As expected, reporter activity in a pattern typical for the LFY promoter was ethanol dependent. Next, we placed the LFY coding sequenced under control of the AlcA response element. In a strong lfy-12 background, this construct in combination with the LFY:AlcR driver provided complete, ethanol-dependent rescue of the lfy phenotype, including restoration of fertility. Apart from facilitating the investigation of temporal and spatial requirements of gene activity, this technology will permit new types of genetic modifier screens starting with mutations that otherwise confer lethality or sterility.

74 citations


Journal ArticleDOI
19 Mar 2004-Cell
TL;DR: An intricate arrangement of different cell types is required for the spring-loaded mechanism of spontaneous seed dispersal typical for many fruits.

6 citations