Author
Devis Tuia
Other affiliations: University of Toronto, University of Valencia, École Normale Supérieure ...read more
Bio: Devis Tuia is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Contextual image classification & Support vector machine. The author has an hindex of 54, co-authored 287 publications receiving 12442 citations. Previous affiliations of Devis Tuia include University of Toronto & University of Valencia.
Papers published on a yearly basis
Papers
More filters
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.
2,095 citations
TL;DR: A regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains, that consistently outperforms state of the art approaches and can be easily adapted to the semi-supervised case where few labeled samples are available in the target domain.
Abstract: Domain adaptation is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly, models built on a specific data representation become more robust when confronted to data depicting the same classes, but described by another observation system. Among the many strategies proposed, finding domain-invariant representations has shown excellent properties, in particular since it allows to train a unique classifier effective in all domains. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labeled samples of the same class in the source domain to remain close during transport. This way, we exploit at the same time the labeled samples in the source and the distributions observed in both domains. Experiments on toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches. In addition, numerical experiments show that our approach leads to better performances on domain invariant deep learning features and can be easily adapted to the semi-supervised case where few labeled samples are available in the target domain.
701 citations
18 Jun 2018
TL;DR: The DeepGlobe 2018 Satellite Image Understanding Challenge is presented, which includes three public competitions for segmentation, detection, and classification tasks on satellite images, and characteristics of each dataset are analyzed, and evaluation criteria for each task are defined.
Abstract: We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images (Figure 1). Similar to other challenges in computer vision domain such as DAVIS[21] and COCO[33], DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018. We observed that satellite imagery is a rich and structured source of information, yet it is less investigated than everyday images by computer vision researchers. However, bridging modern computer vision with remote sensing data analysis could have critical impact to the way we understand our environment and lead to major breakthroughs in global urban planning or climate change research. Keeping such bridging objective in mind, DeepGlobe aims to bring together researchers from different domains to raise awareness of remote sensing in the computer vision community and vice-versa. We aim to improve and evaluate state-of-the-art satellite image understanding approaches, which can hopefully serve as reference benchmarks for future research in the same topic. In this paper, we analyze characteristics of each dataset, define the evaluation criteria of the competitions, and provide baselines for each task.
652 citations
TL;DR: In this article, the authors analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with.
Abstract: Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.
629 citations
TL;DR: In this paper, the authors focus on the challenging problem of hyperspectral image classification, which has recently gained in popularity and attracted the interest of other scientific disciplines such as machine learning, image processing, and computer vision.
Abstract: The technological evolution of optical sensors over the last few decades has provided remote sensing analysts with rich spatial, spectral, and temporal information. In particular, the increase in spectral resolution of hyperspectral images (HSIs) and infrared sounders opens the doors to new application domains and poses new methodological challenges in data analysis. HSIs allow the characterization of objects of interest (e.g., land-cover classes) with unprecedented accuracy, and keeps inventories up to date. Improvements in spectral resolution have called for advances in signal processing and exploitation algorithms. This article focuses on the challenging problem of hyperspectral image classification, which has recently gained in popularity and attracted the interest of other scientific disciplines such as machine learning, image processing, and computer vision. In the remote sensing community, the term classification is used to denote the process that assigns single pixels to a set of classes, while the term segmentation is used for methods aggregating pixels into objects and then assigned to a class.
599 citations
Cited by
More filters
Journal Article•
28,685 citations
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
6,278 citations
TL;DR: This paper reviews remote sensing implementations of support vector machines (SVMs), a promising machine learning methodology that is particularly appealing in the remote sensing field due to their ability to generalize well even with limited training samples.
Abstract: A wide range of methods for analysis of airborne- and satellite-derived imagery continues to be proposed and assessed. In this paper, we review remote sensing implementations of support vector machines (SVMs), a promising machine learning methodology. This review is timely due to the exponentially increasing number of works published in recent years. SVMs are particularly appealing in the remote sensing field due to their ability to generalize well even with limited training samples, a common limitation for remote sensing applications. However, they also suffer from parameter assignment issues that can significantly affect obtained results. A summary of empirical results is provided for various applications of over one hundred published works (as of April, 2010). It is our hope that this survey will provide guidelines for future applications of SVMs and possible areas of algorithm enhancement.
2,546 citations