scispace - formally typeset
Search or ask a question

Showing papers by "Emad S. Alnemri published in 1997"


Journal ArticleDOI
14 Nov 1997-Cell
TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.

7,231 citations


Journal ArticleDOI
TL;DR: TRAIL receptor-3 may function as an antagonistic decoy receptor to attenuate the cytotoxic effect of TRAIL in most tissues that are TRAIL+, DR4+, and DR5+.

625 citations


Journal ArticleDOI
TL;DR: In this paper, equine herpesvirus type 2 E8 protein and molluscum contagiosum virus MC159 protein both show sequence similarity to the death effector domains (DEDs) of the Fas/TNFR1 signaling components FADD and caspase-8.
Abstract: To identify novel antiapoptotic proteins encoded by DNA viruses, we searched viral genomes for proteins that might interfere with Fas and TNFR1 apoptotic signaling pathways. We report here that equine herpesvirus type 2 E8 protein and molluscum contagiosum virus MC159 protein both show sequence similarity to the death effector domains (DEDs) of the Fas/TNFR1 signaling components FADD and caspase-8. Yeast two-hybrid analysis revealed that E8 protein interacted with the caspase-8 prodomain whereas MC159 protein interacted with FADD. Furthermore, expression of either E8 protein or MC159 protein protected cells from Fas- and TNFR1-induced apoptosis indicating that certain herpesviruses and poxviruses use DED-mediated interactions to interfere with apoptotic signaling pathways. These findings identify a novel control point exploited by viruses to regulate Fas- and TNFR1-mediated apoptosis.

413 citations


Journal ArticleDOI
TL;DR: Interestingly, FLAME-1 is recruited to the Fas receptor complex and can abrogate Fas/TNFR-induced apoptosis upon expression in FasL/tumor necrosis factor-sensitive MCF-7 cells, possibly by acting as a dominant-negative inhibitor.

371 citations


Journal ArticleDOI
TL;DR: Execution of apoptosis in higher eukaryotes is apparently more complicated than in nematodes and it is most likely that in mammalian cells this process involves the coordinated action of multiple ASCPs and multiple redundant proteolytic pathways.
Abstract: So far nine human aspartate-specific cysteine proteases (ASCPs) have been identified and cloned in our lab and others. Their sequence and structural homology to the nematode Ced-3 implicated them in the cell death pathway of mammalian cells. Recent evidence suggests that ASCPs initiate apoptosis by acting at or near the cell death effector level. However, it is not clear whether the activity of one or several of these enzymes is necessary for execution of apoptosis. In addition, it is not yet clear how the proenzymes of ASCPs are activated or what triggers their activation. Execution of apoptosis in higher eukaryotes is apparently more complicated than in nematodes. It is most likely that in mammalian cells this process involves the coordinated action of multiple ASCPs and multiple redundant proteolytic pathways.

337 citations


Journal ArticleDOI
TL;DR: Results demonstrate that the CED3/ICE homolog CPP32 is processed and activated during cerebellar granule neuron apoptosis, and suggests that proteolytic processing and activation of CED 3/ICE proteases are specific biochemical markers of apoptosis.
Abstract: Neuronal apoptosis occurs during nervous system development and after pathological insults to the adult nervous system. Inhibition of CED3/ICE-related proteases has been shown to inhibit neuronal apoptosis in vitro and in vivo , indicating a role for these cysteine proteases in neuronal apoptosis. We have studied the activation of the CED3/ICE-related protease CPP32 in two in vitro models of mouse cerebellar granule neuronal cell death: K + /serum deprivation-induced apoptosis and glutamate-induced necrosis. Pretreatment of granule neurons with a selective, irreversible inhibitor of CED3/ICE family proteases, ZVAD-fluoromethylketone, specifically inhibited granule neuron apoptosis but not necrosis, indicating a selective role for CED3/ICE proteases in granule neuron apoptosis. Extracts prepared from apoptotic, but not necrotic, granule neurons contained a protease activity that cleaved the CPP32 substrate Ac-DEVD-aminomethylcoumarin. Induction of the protease activity was prevented by inhibitors of RNA or protein synthesis or by the CED3/ICE protease inhibitor. Affinity labeling of the protease activity with an irreversible CED3/ICE protease inhibitor, ZVK(biotin)D-fluoromethylketone, identified two putative protease subunits, p20 and p18, that were present in apoptotic but not necrotic granule neuron extracts. Western blotting with antibodies to the C terminus of the large subunit of mouse CPP32 (anti-CPP32) identified p20 and p18 as processed subunits of the CPP32 proenzyme. Anti-CPP32 specifically inhibited the DEVD-amc cleaving activity, verifying the presence of active CPP32 protease in the apoptotic granule neuron extracts. Western blotting demonstrated that the CPP32 proenzyme was expressed in granule neurons before induction of apoptosis. These results demonstrate that the CED3/ICE homolog CPP32 is processed and activated during cerebellar granule neuron apoptosis. CPP32 activation requires macromolecular synthesis and CED3/ICE protease activity. The lack of CPP32 activation during granule neuron necrosis suggests that proteolytic processing and activation of CED3/ICE proteases are specific biochemical markers of apoptosis.

296 citations


Journal Article
TL;DR: FADD/MORT1 is a death domain (DD)-containing adaptor/signaling molecule that interacts with the intracellular DD of FAS/APO-I and tumor necrosis factor receptor 1 and the prodomain of caspase-8 (Mch5/MACH/FLICE).
Abstract: FADD/MORT1 is a death domain (DD)-containing adaptor/signaling molecule that interacts with the intracellular DD of FAS/APO-I (CD95) and tumor necrosis factor receptor 1 and the prodomain of caspase-8 (Mch5/MACH/FLICE). FADD engagement of caspase-8 presumably activates this caspase and leads to apoptosis. Another DD-containing adaptor/signaling molecule, CRADD, was identified and was shown to induce apoptosis. CRADD has a dual-domain structure similar to that of FADD. It has an NH2-terminal caspase homology domain that interacts with caspase-2 and a COOH-terminal DD that interacts with RIP. CRADD is constitutively expressed in many tissues and thus could play a role in regulating apoptosis in mammalian cells.

271 citations


Journal ArticleDOI
TL;DR: Hsp90 can exist in at least two functional states, one able to bind p23 and the other with a high affinity for hydrophobic resins, where these states are dictated by the binding of either ATP or ADP.

239 citations


Journal ArticleDOI
TL;DR: The insect Spodoptera frugiperda target of the baculovirus antiapoptotic protein p35 is identified and cloned and the Sf9 nuclear immunophilin FKBP46 was identified as a death-associated substrate for Sf caspase-1.

148 citations


Journal ArticleDOI
TL;DR: This study demonstrates processing/activation of at least four ICE-like proteases during the execution phase of apoptosis in human monocytic tumor THP.1 cells and suggests that Z-VAD.FMK inhibits apoptosis by inhibiting a key effector protease upstream of Ich-1, CPP32, Mch3α, and Mch2α.
Abstract: Identification of the processing/activation of multiple interleukin-1β converting enzyme (ICE)–like proteases and their target substrates in the intact cell is critical to our understanding of the apoptotic process. In this study we demonstrate processing/activation of at least four ICE-like proteases during the execution phase of apoptosis in human monocytic tumor THP.1 cells. Apoptosis was accompanied by processing of Ich-1, CPP32, and Mch3α to their catalytically active subunits, and lysates from these cells displayed a proteolytic activity with kinetics, characteristic of CPP32/Mch3α but not of ICE. Fluorescence-activated cell sorting was used to obtain pure populations of normal and apoptotic cells. In apoptotic cells, extensive cleavage of Ich-1, CPP32, and Mch3α was observed together with proteolysis of the ICE-like protease substrates, poly (ADP-ribose) polymerase (PARP), the 70-kD protein component of U1 small nuclear ribonucleoprotein (U170K), and lamins A/B. In contrast, no cleavage of CPP32, Mch3α or the substrates was observed in normal cells. In cells exposed to an apoptotic stimulus, some processing of Ich-1 was detected in morphologically normal cells, suggesting that cleavage of Ich-1 may occur early in the apoptotic process. The ICE-like protease inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), inhibited apoptosis and cleavage of Ich-1, CPP32, Mch3α, Mch2α, PARP, U1-70K, and lamins. These results suggest that Z-VAD.FMK inhibits apoptosis by inhibiting a key effector protease upstream of Ich-1, CPP32, Mch3α, and Mch2α. Together these observations demonstrate that processing/activation of Ich-1, CPP32, Mch3α, and Mch2α accompanies the execution phase of apoptosis in THP.1 cells. This is the first demonstration of the activation of at least four ICE-like proteases in apoptotic cells, providing further evidence for a requirement for the activation of multiple ICE-like proteases during apoptosis.

142 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the IR-induced proteolytic activity is directly inhibited by the addition of purified recombinant p35, but not by CrmA and that the CPP32 protease is sensitive to p35 and not CrmA.

Journal ArticleDOI
TL;DR: It is demonstrated here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage.
Abstract: A small number of cellular proteins present in the nucleus, cytosol, and membrane fraction are specifically cleaved by the interleukin-1β-converting enzyme (ICE)-like family of proteases during apoptosis. Previous results have demonstrated that one of these, the cytoskeletal protein actin, is degraded in rat PC12 pheochromocytoma cells upon serum withdrawal. Extracts from etoposide-treated U937 cells are also capable of cleaving actin. It was assumed that cleavage of actin represented a general phenomenon, and a mechanism coordinating proteolytic, endonucleolytic, and morphological aspects of apoptosis was proposed. We demonstrate here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage. On the other hand, cell-free extracts from these cells and the ICE-like protease CPP32 were capable of cleaving actin in vitro. We conclude that while actin contains cleavage sites for ICE-like proteases, it is not degraded in vivo in human cells either because of lack of access of these proteases to actin or due to the presence of other factors that prevent degradation.

Journal Article
TL;DR: It is concluded that activation of CPP32 is a critical event in glucocorticoid-induced apoptosis and that this pathway is inhibited at or upstream of C PP32 by baculovirus P35, supporting a role for activation of the ICE/Ced-3-like cysteine protease during glucoc Corticoid’s induced apoptosis.
Abstract: Recent evidence suggests that members of the interleukin-1-β-converting enzyme (ICE)/Ced-3 family are key mediators of mammalian apoptosis. The known members of the ICE/Ced-3 cysteine protease family are synthesized as proenzymes and require proteolytic processing to produce active, heterodimeric enzymes. The baculovirus protein P35 has recently been shown to inhibit several members of the ICE/Ced-3 cysteine protease family. The importance of ICE/Ced-3 cysteine proteases in programmed cell death prompted us to investigate the role of the apoptotic mediator, CPP32, in the glucocorticoid-mediated cell death pathway. Glucocorticoids induce growth inhibition and apoptosis in sensitive leukemic cell lines, immature thymocytes, and eosinophils. In this report, we demonstrate the enzymatic cleavage of proCPP32 to its active subunits in cells undergoing glucocorticoid-induced apoptotic cell death. Concurrently, in apoptotic cells, PARP, a 116-kilodalton (kDa) human poly(ADP-ribose) polymerase, is proteolytically cleaved to its signature 85-kDa fragment. The proteolytic processing of PARP (the nuclear DNA repair enzyme known to be cleaved in association with apoptosis) is catalyzed by members of the ICE/Ced-3 family. Importantly, stable transfection of the antiapoptotic baculovirus P35 inhibits glucocorticoid-induced apoptotic cell death, proteolytic processing of proCPP32, and cleavage of the 116-kDa PARP. We conclude that activation of CPP32 is a critical event in glucocorticoid-induced apoptosis and that this pathway is inhibited at or upstream of CPP32 by baculovirus P35. These data demonstrate that PARP cleavage occurs during glucocorticoid-induced apoptotic cell death and show that this proteolytic process is blocked by the expression of baculovirus P35, supporting a role for activation of the ICE/Ced-3-like cysteine protease during glucocorticoid-induced apoptosis.

01 Jan 1997
TL;DR: Investigation of the presence of hsp70, hsp90, and the immunophilin FKBP-52 in the nonsteroid-bound MR complex and stoichiometric analysis of the proteins present within the heteromeric MR complex suggests a divergence between this receptor and the GR.
Abstract: The human mineralocorticoid receptor (MR) is a member of the steroid-thyroid hormone receptor superfamily, which includes receptors for retinoic acid, vitamin D, and other steroids, such as the glucocorticoids (which bind the glucocorticoid receptor, GR). MR and GR, the corticosteroid receptors, share significant homology and are activated by steroid binding, resulting in a conformational change, nuclear translocation, and DNA binding. Despite these similarities with GR, the MR remains less well characterized. However, protein components known to be present in the unliganded GR are also likely to be components of the heteromeric MR complex. In the current study, we investigated whether or not hsp70, hsp90, and the immunophilin FKBP-52 are present in the nonsteroid-bound MR complex, because these proteins are known to be present in the unliganded GR complex. The unliganded MR complex was assembled in vitro using reticulocyte lysate and in vivo using the baculovirus overexpression system and Spodoptera frugiperda (Sf9) cells. Western blot analysis revealed the presence of hsp70, hsp90, and FKBP-52 in the unliganded complexes, but hsp90 and FKBP-52 were not detected following exposure to aldosterone. Electrophoretic mobility shift analysis demonstrated that DNA binding of MR occurred only after treatment with aldosterone. These studies indicate that proteins associated with the unliganded GR are also present in the unliganded MR complex, and that hsp90 and FKBP-52 dissociate prior to DNA binding in a manner similar to that described for GR. Finally, the stoichiometric analysis of the proteins present within the heteromeric MR complex suggests a divergence between this receptor and the GR.

Journal ArticleDOI
TL;DR: It is suggested that a PAO-sensitive caspase that is distinct from the PARP- or lamin-cleaving enzymes is required for the initiation of apoptotic morphological changes and for the activation of endonuclease(s).

Journal ArticleDOI
TL;DR: The ecdysone receptor (EcR) complex was identified in the prothoracic gland of Manduca sexta by specific immunoprecipitation and Western blot analyses, and includes EcR, ultraspiracle (USP) and FKBP46 as discussed by the authors.

Patent
19 Mar 1997
TL;DR: In this article, isolated genes and nucleic acids encoding functional fragments such as the FADD-like domains Mch4A, mch4B, Mch5A and mch5B are also provided.
Abstract: The invention provides an isolated gene encoding Mch4 or an isolated gene encoding Mch5 as well as functional fragments thereof. Also provided are isolated nucleic acid sequences encoding Mch4 or Mch5 or functional fragment thereof. The gene or nucleic acid sequences can be single or double stranded nucleic acids corresponding to coding or non-coding strands of the Mch4 or Mch5 nucleotide sequences. Also provided are genes and nucleic acids encoding functional fragments such as the FADD-like domains Mch4A, Mch4B, Mch5A and Mch5B. Isolated Mch4 or Mch5 polypeptides or functional fragments thereof including the FADD-like domains Mch4A, Mch4B, Mch5A and Mch5B are also provided.

Journal ArticleDOI
TL;DR: Results are consistent with at least three distinct TPCK targets, one being important for cell survival, the second in facilitating internucleosomal cleavage of DNA and the third in the modulation of apoptosis induced by different apoptotic stimuli.
Abstract: N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK), a chymotrypsin-like serine protease inhibitor, affected apoptosis in human monocytic THP.1 cells differently dependent on both the concentration used and the apoptotic stimulus. TPCK (50 - 75 microM) induced both biochemical and ultrastructural changes characteristic of apoptosis, including proteolysis of poly (ADP-ribose) polymerase (PARP) and lamins together with formation of large kilobase pair fragments of DNA, particularly of 30 - 50 and 200 - 300 kilobase pairs in length but without internucleosomal cleavage of DNA. The induction of apoptosis by TPCK also involved the processing of CPP32 and Mch 3 to their catalytically active subunits. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), an ICE-like protease inhibitor, completely prevented all the biochemical and morphological changes induced by TPCK demonstrating the involvement of ICE-like proteases in the execution phase of apoptosis. Lower concentrations of TPCK (5 - 20 microM) prevented internucleosomal cleavage of DNA induced by other apoptotic stimuli. TPCK (10 microM) inhibited cell death induced by etoposide but potentiated that induced by cycloheximide demonstrating that it differentially affected apoptosis in THP.1 cells dependent on the stimulus used. These results are consistent with at least three distinct TPCK targets, one being important for cell survival, the second in facilitating internucleosomal cleavage of DNA and the third in the modulation of apoptosis induced by different apoptotic stimuli.

Journal ArticleDOI
TL;DR: A critical role is demonstrated for the activation of interleukin-1 beta-converting enzyme-like proteases in p53-induced apoptosis, accompanied by the processing and activation of CPP32 and Mch3 alpha, together with the cleavage of poly(ADP-ribose) polymerase and lamin B1.
Abstract: DNA-damaging agents induce apoptosis primarily by a p53-dependent pathway. LTR6 cells containing a temperature-sensitive p53 were used to dissect further the mechanisms of p53-induced apoptosis. Apoptosis was accompanied by the processing and activation of CPP32 and Mch3 alpha, together with the cleavage of poly(ADP-ribose) polymerase and lamin B1. These results demonstrate a critical role for the activation of interleukin-1 beta-converting enzyme-like proteases in p53-induced apoptosis.


Patent
29 May 1997
TL;DR: In this article, the authors provided an isolated gene encoding Mch6 as well as functional fragments thereof and isolated nucleic acid sequences encoding either coding or non-coding strands of the mch6 nucleotide sequences.
Abstract: The invention provides an isolated gene encoding Mch6 as well as functional fragments thereof. Also provided are isolated nucleic acid sequences encoding Mch6 or functional fragments thereof. The gene or nucleic acid sequences can be single or double stranded nucleic acids corresponding to coding or non-coding strands of the Mch6 nucleotide sequences. The invention further provides an isolated Mch6 polypeptide and isolated large and small subunits of the Mch6 polypeptide, including functional fragments thereof.