scispace - formally typeset
Search or ask a question

Showing papers by "Erik R. Ivins published in 2016"


Journal ArticleDOI
TL;DR: It is found that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations.
Abstract: Earth’s spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003–2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate.

110 citations


Journal ArticleDOI
TL;DR: In this paper, the rates of vertical motion are derived from interferometric synthetic aperture radar (InSAR) applied to Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), acquired on 16 June 2009 and 2 July 2012.
Abstract: New measurements of ongoing subsidence of land proximal to the city of New Orleans, Louisiana, and including areas around the communities of Norco and Lutcher upriver along the Mississippi are reported. The rates of vertical motion are derived from interferometric synthetic aperture radar (InSAR) applied to Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data acquired on 16 June 2009 and 2 July 2012. The subsidence trends are similar to those reported for 2002–2004 in parts of New Orleans where observations overlap, in particular in Michoud, the 9th Ward, and Chalmette, but are measured at much higher spatial resolution (6 m). The spatial associations of cumulative surface movements suggest that the most likely drivers of subsidence are groundwater withdrawal and surficial drainage/dewatering activities. High subsidence rates are observed localized around some major industrial facilities and can affect nearby flood control infrastructure. Substantial subsidence is observed to occur rapidly from shallow compaction in highly localized areas, which is why it could be missed in subsidence surveys relying on point measurements at limited locations.

70 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale and simulating geophysical observables that are inherently of global scale with minimal computational cost.
Abstract: . A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.

54 citations


01 Jan 2016
TL;DR: In this paper, a consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth.
Abstract: Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth’s gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations.

45 citations