scispace - formally typeset
Search or ask a question

Showing papers by "Gary R. Huss published in 2019"


Journal ArticleDOI
TL;DR: Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant as discussed by the authors.
Abstract: Grossite (CaAl4O7) is one of the one of the first minerals predicted to condense from a gas of solar composition, and therefore could have recorded isotopic compositions of reservoirs during the earliest stages of the Solar System evolution. Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant. We report new and summarize the existing data on the mineralogy, petrography, oxygen and aluminum-magnesium isotope systematics of grossite-bearing CAIs from the CR, CH, CB, CM, CO, and CV carbonaceous chondrites. Grossite-bearing CAIs from unmetamorphosed (petrologic type 2―3.0) carbonaceous chondrites preserved evidence for heterogeneous distribution of 26Al in the protoplanetary disk. The inferred initial 26Al/27Al ratio [(26Al/27Al)0] in grossite-bearing CAIs is generally bimodal, ˜0 and ˜5×10−5; the intermediate values are rare. CH and CB chondrites are the only groups where vast majority of grossite-bearing CAIs lacks resolvable excess of radiogenic 26Mg. Grossite-bearing CAIs with approximately the canonical (26Al/27Al)0 of ˜5×10−5 are dominant in other chondrite groups. Most grossite-bearing CAIs in type 2–3.0 carbonaceous chondrites have uniform solar-like O-isotope compositions (Δ17O ˜ ‒24±2‰). Grossite-bearing CAIs surrounded by Wark-Lovering rims in CH chondrites are also isotopically uniform, but show a large range of Δ17O, from ˜ ‒40‰ to ˜ ‒5‰, suggesting an early generation of gaseous reservoirs with different oxygen-isotope compositions in the protoplanetary disk. Igneous grossite-bearing CAIs surrounded by igneous rims of ±melilite, Al-diopside, and Ca-rich forsterite, found only in CB and CH chondrites, have uniform 16O-depleted compositions (Δ17O ˜ ‒14‰ to ‒5‰). These CAIs appear to have experienced complete melting and incomplete O-isotope exchange with a 16O-poor (Δ17O ˜ ‒2‰) gas in the CB impact plume generated about 5 Ma after CV CAIs. Grossite-bearing CAIs in metamorphosed (petrologic type >3.0) CO and CV chondrites have heterogeneous Δ17O resulted from mineralogically-controlled isotope exchange with a 16O-poor (Δ17O ˜ ‒2 to 0‰) aqueous fluid on the CO and CV parent asteroids 3–5 Ma after CV CAIs. This exchange affected grossite, krotite, melilite, and perovskite; corundum, hibonite, spinel, diopside, forsterite, and enstatite preserved their initial O-isotope compositions. The internal 26Al-26Mg isochrons in grossite-bearing CAIs from weakly-metamorphosed CO and CV chondrites were not disturbed during this oxygen-isotope exchange. HCCJr is grateful to Klaus Keil for all his sound profession counsel and collegial friendship over the years. He has always been willing to talk and has the generous nature of listening and sharing his thoughts freely and constructively. Professor Klaus Keil has been a mentor to and played a key role in the careers of three of the authors of this paper (ANK, KN, and GRH). He has also influenced the careers of the other authors and most of the people who have worked on meteorites over the past 50+ years. We therefore dedicate this paper to Professor Keil and present it in this Special Issue of Geochemistry.

13 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of a field of fine-grained material (FGM) in contact with a large sulfide particle, which was partially located in an embayment in the sulfide.
Abstract: In a consortium analysis of a large particle captured from the coma of comet 81P/Wild 2 by the Stardust spacecraft, we report the discovery of a field of fine-grained material (FGM) in contact with a large sulfide particle. The FGM was partially located in an embayment in the sulfide. As a consequence, some of the FGM appears to have been protected from damage during hypervelocity capture in aerogel. Some of the FGM particles are indistinguishable in their characteristics from common components of chondritic-porous interplanetary dust particles (CP-IDPs), including glass with embedded metals and sulfides (GEMS) and equilibrated aggregates (EAs). The sulfide exhibits surprising Ni-rich lamellae, which may indicate that this particle experienced a long-duration heating event after its formation but before incorporation into Wild 2.

3 citations


Journal ArticleDOI
TL;DR: The authors measured the O isotopic composition of an enstatite ribbon from a giant cluster interplanetary dust particle to be O(delta 18, O(25, 16, 55), O(Delta 17,O(19, 19, 19)129), and O(Delta 18,O((25, 15, 14, 25, 16)) for the Genesis solar wind measurements, which is inconsistent at the 2$sigma$ level with the composition of the Sun inferred from the Genesis data.
Abstract: Filamentary enstatite crystals are found in interplanetary dust particles of likely cometary origin but are very rare or absent in meteorites. Crystallographic characteristics of filamentary enstatites indicate that they condensed directly from vapor. We measured the O isotopic composition of an enstatite ribbon from a giant cluster interplanetary dust particle to be $\delta^{18}\rm{O}{=25{\pm}55}$, $\delta^{17}\rm{O}{=-19{\pm}129}$, $\Delta^{17}\rm{O}{=-32{\pm}134}$ (2$\sigma$ errors), which is inconsistent at the 2$\sigma$ level with the composition of the Sun inferred from the Genesis solar wind measurements. The particle's O isotopic composition, consistent with the terrestrial composition, implies that it condensed from a gas of non-solar O isotopic composition, possibly as a result of vaporization of disk region enriched in $^{16}$O-depleted solids. The relative scarcity of filamentary enstatite in asteroids compared to comets implies either that this crystal condensed from dust vaporized \textit{in-situ} in the outer Solar System where comets formed, or it condensed in the inner Solar System and was subsequently transported outward to the comet-forming region.

1 citations