scispace - formally typeset
Search or ask a question

Showing papers by "Gavin Sherlock published in 2020"


Journal ArticleDOI
TL;DR: It is found that crAss-like phages are rarely detected at birth but are increasingly prevalent in the infant microbiome after one month of life, and that strain diversity in infants increases with time.
Abstract: CrAss-like phages are double-stranded DNA viruses that are prevalent in human gut microbiomes. Here, we analyze gut metagenomic data from mother-infant pairs and patients undergoing fecal microbiota transplantation to evaluate the patterns of acquisition, transmission and strain diversity of crAss-like phages. We find that crAss-like phages are rarely detected at birth but are increasingly prevalent in the infant microbiome after one month of life. We observe nearly identical genomes in 50% of cases where the same crAss-like clade is detected in both the mother and the infant, suggesting vertical transmission. In cases of putative transmission of prototypical crAssphage (p-crAssphage), we find that a subset of strains present in the mother are detected in the infant, and that strain diversity in infants increases with time. Putative tail fiber proteins are enriched for nonsynonymous strain variation compared to other genes, suggesting a potential evolutionary benefit to maintaining strain diversity in specific genes. Finally, we show that p-crAssphage can be acquired through fecal microbiota transplantation.

50 citations


Posted ContentDOI
13 Jun 2020-bioRxiv
TL;DR: It is found that disruptive mutations, such as nonsense and frameshift, were much more common in the first step of adaptation, contributing an additional way that both diminishing returns and historical contingency are evident during 2nd step adaptation.
Abstract: The fitness effects of random mutations are contingent upon the genetic and environmental contexts in which they occur, and this contributes to the unpredictability of evolutionary outcomes at the molecular level. Despite this unpredictability, the rate of adaptation in homogeneous environments tends to decrease over evolutionary time, due to diminishing returns epistasis, causing relative fitness gains to be predictable over the long term. Here, we studied the extent of diminishing returns epistasis and the changes in the adaptive mutational spectra after yeast populations have already taken their first adaptive mutational step. We used three distinct adaptive clones that arose under identical conditions from a common ancestor, from which they diverge by a single point mutation, to found populations that we further evolved. We followed the evolutionary dynamics of these populations by lineage tracking and determined adaptive outcomes using fitness assays and whole genome sequencing. We found compelling evidence for diminishing returns: fitness gains during the 2nd step of adaptation are smaller than those of the 1st step, due to a compressed distribution of fitness effects in the 2nd step. We also found strong evidence for historical contingency at the genic level: the beneficial mutational spectra of the 2nd-step adapted genotypes differ with respect to their ancestor and to each other, despite the fact that the three founders9 1st-step mutations provided their fitness gains due to similar phenotypic improvements. While some targets of selection in the second step are shared with those seen in the common ancestor, other targets appear to be contingent on the specific first step mutation, with more phenotypically similar founding clones having more similar adaptive mutational spectra. Finally, we found that disruptive mutations, such as nonsense and frameshift, were much more common in the first step of adaptation, contributing an additional way that both diminishing returns and historical contingency are evident during 2nd step adaptation.

20 citations


Posted ContentDOI
05 Dec 2020-bioRxiv
TL;DR: While initial colonization was mostly uniform, in two mice a bottleneck reduced diversity and selected for ciprofloxacin resistance in the absence of drug, highlighting the interplay between environmental transmission and rapid, deterministic selection during evolution of the intestinal microbiota.
Abstract: Summary Due to limitations on high-resolution strain tracking, selection dynamics during gut-microbiota colonization and transmission between hosts remain mostly mysterious. Here, we introduced hundreds of barcoded Escherichia coli strains into germ-free mice and quantified strain-level dynamics and metagenomic changes. Mutants involved in motility and utilization of abundant metabolites were reproducibly selected within days. Even with rapid selection, coprophagy enforced similar barcode distributions across co-housed mice. Whole-genome sequencing of hundreds of isolates quantified evolutionary dynamics and revealed linked alleles. A population-genetics model predicted substantial fitness advantages for certain mutants and that migration accounted for ~10% of the resident microbiota each day. Treatment with ciprofloxacin demonstrated the interplay between selection and transmission. While initial colonization was mostly uniform, in two mice a bottleneck reduced diversity and selected for ciprofloxacin resistance in the absence of drug. These findings highlight the interplay between environmental transmission and rapid, deterministic selection during evolution of the intestinal microbiota.

3 citations


Journal ArticleDOI
TL;DR: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3 citations