scispace - formally typeset
Search or ask a question

Showing papers by "Gerald H. Haug published in 2015"


Journal ArticleDOI
TL;DR: The position of the intertropical convergence zone may be influenced by aerosols as mentioned in this paper, and a 450-year-long precipitation record from Belize confirms a southward shift associated with increasing anthropogenic aerosol emissions in the Northern Hemisphere.
Abstract: The position of the intertropical convergence zone may be influenced by aerosols. A 450-year-long precipitation record from Belize confirms a southward shift associated with increasing anthropogenic aerosol emissions in the Northern Hemisphere.

121 citations


Journal ArticleDOI
TL;DR: Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at ∼725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5).

119 citations


Journal ArticleDOI
TL;DR: In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, the authors report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich).
Abstract: In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the δ15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the δ15Ndb changes are not the result of changing species composition. The pennate and centric assemblage δ15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate δ15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.

81 citations


Journal ArticleDOI
TL;DR: In this paper, the MIAMI Ionic Interaction model is used to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+], and investigate the relationship among the ocean pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (?), and buffer capacity.
Abstract: Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean’s acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium “constants” are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic InteractionModel to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+]. We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean’s pH,CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (?), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances “ion pairing,” which increases seawater buffering by increasing the concentration ratio of total to “free” (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given ?, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+] ~20mM; [Mg2+]~30mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern ? and the estimated Eocene atmospheric CO2 of ~1000 ppm. During the Cretaceous, at ~4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increasing seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.

65 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27,000 years based on a core from the Detroit Seamount.
Abstract: We present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27,000 years based on a core from the Detroit Seamount. Comparing the SNP dust record to the North Greenland Ice Core Project (NGRIP) ice core record shows significant differences in the amplitude of dust changes to the two regions during the last deglaciation, while the timing of abrupt changes is synchronous. If dust deposition in the SNP faithfully records its mobilization in East Asian source regions, then the difference in the relative amplitude must reflect climate-related changes in atmospheric dust transport to Greenland. Based on the synchronicity in the timing of dust changes in the SNP and Greenland, we tie abrupt deglacial transitions in the 230Th-normalized 4He flux record to corresponding transitions in the well-dated NGRIP dust flux record to provide a new chronostratigraphic technique for marine sediments from the SNP. Results from this technique are complemented by radiocarbon dating, which allows us to independently constrain radiocarbon paleoreservoir ages. We find paleoreservoir ages of 745 ± 140 years at 11,653 year B.P., 680 ± 228 years at 14,630 year B.P., and 790 ± 498 years at 23,290 year B.P. Our reconstructed paleoreservoir ages are consistent with modern surface water reservoir ages in the western SNP. Good temporal synchronicity between eolian dust records from the Subantarctic Atlantic and equatorial Pacific and the ice core record from Antarctica supports the reliability of the proposed dust tuning method to be used more widely in other global ocean regions.

42 citations


Journal ArticleDOI
TL;DR: This reconstruction provides new independent evidence of long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.
Abstract: Approximately half of the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just the freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand the mechanisms/processes that affect tropical precipitation and the eventual surface hydrological response to better assess projected future regional precipitation trends and variability. Paleo-climate proxies are well suited for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation, whose onset coincides with clusters of large volcanic eruptions during the nineteenth and twentieth centuries. This reconstruction provides new independent evidence of long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.

33 citations


Journal ArticleDOI
TL;DR: Foraminifera-bound δ15N in Neogloboquadrina pachyderma and Globigerina bulloides was reported in the same core over the past 25 kyr as mentioned in this paper.
Abstract: Reduced nitrate supply to the subarctic North Pacific (SNP) surface during the last ice age has been inferred from coupled changes in diatom-bound δ15N (DB-δ15N), bulk sedimentary δ15N, and biogenic fluxes. However, the reliability of bulk sedimentary and DB-δ15N has been questioned, and a previously reported δ15N minimum during Heinrich Stadial 1 (HS1) has proven difficult to explain. In a core from the western SNP, we report the foraminifera-bound δ15N (FB-δ15N) in Neogloboquadrina pachyderma and Globigerina bulloides, comparing them with DB-δ15N in the same core over the past 25 kyr. The δ15N of all recorders is higher during the Last Glacial Maximum (LGM) than in the Holocene, indicating more complete nitrate consumption. N. pachyderma FB-δ15N is similar to DB-δ15N in the Holocene but 2.2‰ higher during the LGM. This difference suggests a greater sensitivity of FB-δ15N to changes in summertime nitrate drawdown and δ15N rise, consistent with a lag of the foraminifera relative to diatoms in reaching their summertime production peak in this highly seasonal environment. Unlike DB-δ15N, FB-δ15N does not decrease from the LGM into HS1, which supports a previous suggestion that the HS1 DB-δ15N minimum is due to contamination by sponge spicules. FB-δ15N drops in the latter half of the Bolling/Allerod warm period and rises briefly in the Younger Dryas cold period, followed by a decline into the mid-Holocene. The FB-δ15N records suggest that the coupling among cold climate, reduced nitrate supply, and more complete nitrate consumption that characterized the LGM also applied to the deglacial cold events.

32 citations