scispace - formally typeset
Search or ask a question

Showing papers by "Gordon P. Garmire published in 2015"


Journal ArticleDOI
TL;DR: In this paper, an X-ray and multi-wavelength study of 33 weak emission-line quasars and 18 supernova analogs of the extreme WLQ, PHL 1811, at z ≈ 0.5 −2.9.
Abstract: We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z ≈ 0.5‐2.9. New Chandra 1.5‐9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ( = 1.16 +0.37 -0.32 ) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite SDSS spectra for the X-ray weak and Xray normal populations and find several optical‐UV tracers o f X-ray weakness; e.g., Fe II rest-frame equivalent width and relative color. We describe how orientation effects under our previously proposed “shielding-gas” scenario can likely unify the X-ray weak and X-ray normal populations. We suggest that the shielding gas may naturally be understood as a geometrically thick inner accretion disk that shields the broad line region from the ionizing continuum. If WLQs and PHL 1811 analogs have very high Eddington ratios, the inner disk could be significantly puffed up (e.g., a slim disk). Shielding of t he broad emission-line region by a geometrically thick disk may have a significant role in setting the broad dis tributions of C IV rest-frame equivalent width and blueshift for quasars more generally. Subject headings: accretion, accretion disks ‐ galaxies: active ‐ galaxies: n uclei ‐ quasars: emission lines ‐ X-rays: galaxies

155 citations



Journal ArticleDOI
TL;DR: In this article, the authors presented new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243) and reported a strong detection of OVI(1032,1038) which appears to originate primarily in shock-heated gas, but may contain a substantial contribution from the cooling ICM.
Abstract: We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously-undetected filaments of star formation, extending to radii of ~50-100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2x10^9 Msun)), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 +/- 50 Msun/yr. We report a strong detection of OVI(1032,1038) which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 Msun/yr) from the cooling intracluster medium. We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are amongst the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2-7 x10^45 erg/s. We provide evidence that the AGN inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode", and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ~100 kpc, with extended "ghost" cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ~200 kpc (0.15R500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments.

75 citations


Journal ArticleDOI
TL;DR: In this article, an X-ray and multi-wavelength study of 33 weak emission-line quasars and 18 analogs of the extreme WLQ, PHL 1811, at z = 0.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-Ray observations.
Abstract: We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z ~ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ($\Gamma=1.16_{-0.32}^{+0.37}$) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite SDSS spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness; e.g., Fe II rest-frame equivalent width and relative color. We describe how orientation effects under our previously proposed "shielding-gas" scenario can likely unify the X-ray weak and X-ray normal populations. We suggest that the shielding gas may naturally be understood as a geometrically thick inner accretion disk that shields the broad line region from the ionizing continuum. If WLQs and PHL 1811 analogs have very high Eddington ratios, the inner disk could be significantly puffed up (e.g., a slim disk). Shielding of the broad emission-line region by a geometrically thick disk may have a significant role in setting the broad distributions of C IV rest-frame equivalent width and blueshift for quasars more generally.

72 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed X-ray analysis of two black-widow pulsars, J1446-4701 and J1311-3430, was presented.
Abstract: We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446–4701 and J1311–3430. PSR J1446–4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311–3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (~2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar's X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

21 citations


Posted Content
TL;DR: In this article, the authors present the results of detailed X-ray analysis of two black-widow pulsars, J1446-4701 and J1311-3430.
Abstract: We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446-4701 and J1311-3430. PSR J1446-4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission detected by $XMM-Newton$ is well characterized by a soft power-law (PL) spectrum (photon index $\Gamma \approx 3$), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311-3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our $Chandra$ data confirm the hard, $\Gamma \approx 1.3$, emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint ($\sim 2.6 \sigma$) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with $Chandra$ and compare their X-ray properties. Pulsars with soft, $\Gamma > 2.5$, emission seem to have lower than average X-ray and $\gamma$-ray luminosities. We do not, however, see any other prominent correlation between the pulsar's X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

5 citations