scispace - formally typeset
I

Inanc Meric

Researcher at Intel

Publications -  53
Citations -  14583

Inanc Meric is an academic researcher from Intel. The author has contributed to research in topics: Graphene & Graphene nanoribbons. The author has an hindex of 20, co-authored 49 publications receiving 12815 citations. Previous affiliations of Inanc Meric include IBM & Columbia University.

Papers
More filters
Journal ArticleDOI

Boron nitride substrates for high-quality graphene electronics

TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Journal ArticleDOI

One-dimensional electrical contact to a two-dimensional material.

TL;DR: In graphene heterostructures, the edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials, and enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-tem temperature mobility comparable to the theoretical phonon-scattering limit.
Journal ArticleDOI

Current saturation in zero-bandgap, top-gated graphene field-effect transistors.

TL;DR: The first observation of saturating transistor characteristics in a graphene field-effect transistor is reported, demonstrating the feasibility of two-dimensional graphene devices for analogue and radio-frequency circuit applications without the need for bandgap engineering.
Journal ArticleDOI

Chip-integrated ultrafast graphene photodetector with high responsivity

TL;DR: In this article, a chip-integrated graphene photodetector with a high responsivity of over 0.1 A W−1, high speed and broad spectral bandwidth is realized through enhanced absorption due to near-field coupling.
Journal ArticleDOI

Wafer-Scale Graphene Integrated Circuit

TL;DR: A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer.