scispace - formally typeset
Search or ask a question

Showing papers by "Jean Clobert published in 2014"


Journal ArticleDOI
TL;DR: Good dispersal ability was consistently associated with high fecundity and survival, and in aerial dispersers it was associated with early maturation, highlighting the complex role of dispersal in the evolution of species life-history strategies.
Abstract: Dispersal, the behaviour ensuring gene flow, tends to covary with a number of morphological, ecological and behavioural traits. While species-specific dispersal behaviours are the product of each species’ unique evolutionary history, there may be distinct interspecific patterns of covariation between dispersal and other traits (‘dispersal syndromes’) due to their shared evolutionary history or shared environments. Using dispersal, phylogeny and trait data for 15 terrestrial and semi-terrestrial animal Orders (> 700 species), we tested for the existence and consistency of dispersal syndromes across species. At this taxonomic scale, dispersal increased linearly with body size in omnivores, but decreased above a critical length in herbivores and carnivores. Species life history and ecology significantly influenced patterns of covariation, with higher phylogenetic signal of dispersal in aerial dispersers compared with ground dwellers and stronger evidence for dispersal syndromes in aerial dispersers and ectotherms, compared with ground dwellers and endotherms. Our results highlight the complex role of dispersal in the evolution of species life-history strategies: good dispersal ability was consistently associated with high fecundity and survival, and in aerial dispersers it was associated with early maturation. We discuss the consequences of these findings for species evolution and range shifts in response to future climate change.

199 citations


Journal ArticleDOI
TL;DR: This work compiled data on amphibian life history traits from literature in an extensive database with morphological and behavioral traits, habitat preferences and movement abilities for 86 European amphibian species (50 Anuran and 36 Urodela species).
Abstract: In the current context of climate change and landscape fragmentation, efficient conservation strategies require the explicit consideration of life history traits. This is particularly true for amphibians, which are highly threatened worldwide, composed by more than 7400 species, which is constitute one of the most species-rich vertebrate groups. The collection of information on life history traits is difficult due to the ecology of species and remoteness of their habitats. It is therefore not surprising that our knowledge is limited, and missing information on certain life history traits are common for in this species group. We compiled data on amphibian life history traits from literature in an extensive database with morphological and behavioral traits, habitat preferences and movement abilities for 86 European amphibian species (50 Anuran and 36 Urodela species). When it were available, we reported data for males, females, juveniles and tadpoles. Our database may serve as an important starting point for further analyses regarding amphibian conservation.

95 citations


Journal ArticleDOI
TL;DR: These results suggest that mothers adjusted offspring phenotype to risky natal environments (tail length) or increased risk avoidance (dispersal) to increase offspring survival prospects.
Abstract: Predation is a strong selective pressure generating morphological, physiological and behavioural responses in organisms. As predation risk is often higher during juvenile stages, antipredator defences expressed early in life are paramount to survival. Maternal effects are an efficient pathway to produce such defences. We investigated whether maternal exposure to predator cues during gestation affected juvenile morphology, behaviour and dispersal in common lizards (Zootoca vivipara). We exposed 21 gravid females to saurophagous snake cues for one month while 21 females remained unexposed (i.e. control). We measured body size, preferred temperature and activity levels for each neonate, and released them into semi-natural enclosures connected to corridors in order to measure dispersal. Offspring from exposed mothers grew longer tails, selected lower temperatures and dispersed thrice more than offspring from unexposed mothers. Because both tail autotomy and altered thermoregulatory behaviour are common antipredator tactics in lizards, these results suggests that mothers adjusted offspring phenotype to risky natal environments (tail length) or risk avoidance (dispersal). Although maternal effects can be passive consequences of maternal stress, our results strongly militate for them to be an adaptive antipredator response that may increase offspring survival prospects.

95 citations


Journal ArticleDOI
TL;DR: If and how the movement ecology paradigm (MEP) provides an added value to the study of dispersal on organisms is investigated, and a mixed approach combining the Eulerian and Lagrangian viewpoints could deal with this high dispersal variability.
Abstract: Understanding how dispersal movements are motivated and executed is the core business of dispersal evolutionary ecology, which is an active research field in environmental sciences. However, recent advances in dispersal research have not yet been confronted to the movement ecology paradigm (MEP) that was introduced to unify the study of all types of movements of all organisms. Here we aim at doing this exercise to investigate if the MEP is sufficiently general to provide sound predictions on dispersal causes, modalities and consequences. We begin by briefly summarizing the main concepts of the MEP that are relevant to our analysis. A part of some examples, many studies focusing on animal movements share a common, two step procedures: (1) record movement paths, and (2) test post-hoc functional assumptions to identify the relationships between the four basic components listed above. Then we present some important results from dispersal evolutionary ecology research. Next we turn to two groups of model organisms (butterflies and lizards), in which dispersal has been thoroughly studied in the field for decades. These organisms have contrasted dispersal modes: the causes of dispersal are mainly related to the social context in lizards, whereas they are mainly dependent on the environmental context in butterflies. Lizards disperse most often once in their life soon after birth, whereas butterflies generally disperse all over their adult life. We investigate if and how the MEP provides an added value to the study of dispersal on these organisms. Although the MEP is in principle encapsulates almost every variation acting on movement, its ability to incorporate variation in anything else than pure movement trajectories appears to be mixed: dispersal is extremely phenotype- and context-dependent, which rends difficult the use of the MEP as an operational tool to incorporate variation across individuals and situations. We propose that a mixed approach combining the Eulerian and Lagrangian viewpoints could deal with this high dispersal variability. We conclude by providing perspectives for the integration of ecological and evolutionary processes affecting dispersal into the MEP that could increase its efficiency to study dispersal.

44 citations


Journal ArticleDOI
TL;DR: It was shown that future dispersers were less neophobic and had higher energetic budgets than future philopatric individuals, providing strong support for a dispersal syndrome in this species.
Abstract: When individuals disperse, they modify the physical and social composition of their reproductive environment, potentially impacting their fitness. The choice an individual makes between dispersal and philopatry is thus critical, hence a better understanding of the mechanisms involved in the decision to leave the natal area is crucial. We explored how combinations of behavioural (exploration, mobility, activity and stress response) and morphological (body mass) traits measured prior to dispersal were linked to the subsequent dispersal decision in 77 roe deer Capreolus capreolus fawns. Using an unusually detailed multi-trait approach, we identified two independent behavioural continuums related to dispersal. First, a continuum of energetic expenditure contrasted individuals of low mobility, low variability in head activity and low body temperature with those that displayed opposite traits. Second, a continuum of neophobia contrasted individuals that explored more prior to dispersal and were more tolerant of capture with those that displayed opposite traits. While accounting for possible confounding effects of condition-dependence (body mass), we showed that future dispersers were less neophobic and had higher energetic budgets than future philopatric individuals, providing strong support for a dispersal syndrome in this species.

36 citations


Journal ArticleDOI
TL;DR: The Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios is demonstrated.
Abstract: Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m3 chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab’s capacity to simulate a broad range of atmospheric and climatic conditions, t...

19 citations