scispace - formally typeset
Search or ask a question
JournalISSN: 1461-023X

Ecology Letters 

Wiley-Blackwell
About: Ecology Letters is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Population & Species richness. It has an ISSN identifier of 1461-023X. Over the lifetime, 3687 publications have been published receiving 551572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of common pitfalls in quantifying and comparing taxon richness are surveyed, including category‐subcategory ratios (species-to-genus and species-toindividual ratios) and rarefaction methods, which allow for meaningful standardization and comparison of datasets.
Abstract: Species richness is a fundamental measurement of community and regional diversity, and it underlies many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the effects of abundance and sampling effort on richness measures and comparisons. We survey a series of common pitfalls in quantifying and comparing taxon richness. These pitfalls can be largely avoided by using accumulation and rarefaction curves, which may be based on either individuals or samples. These taxon sampling curves contain the basic information for valid richness comparisons, including category‐subcategory ratios (species-to-genus and species-toindividual ratios). Rarefaction methods ‐ both sample-based and individual-based ‐ allow for meaningful standardization and comparison of datasets. Standardizing data sets by area or sampling effort may produce very different results compared to standardizing by number of individuals collected, and it is not always clear which measure of diversity is more appropriate. Asymptotic richness estimators provide lower-bound estimates for taxon-rich groups such as tropical arthropods, in which observed richness rarely reaches an asymptote, despite intensive sampling. Recent examples of diversity studies of tropical trees, stream invertebrates, and herbaceous plants emphasize the importance of carefully quantifying species richness using taxon sampling curves.

5,706 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in species distribution models, and new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales are suggested.
Abstract: In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.

5,620 citations

Journal ArticleDOI
TL;DR: This framework is used to discuss why the metacommunity concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples.
Abstract: The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch-dynamic view, the species-sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio-temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.

4,266 citations

Journal ArticleDOI
TL;DR: Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.
Abstract: Microbes are the unseen majority in soil and comprise a large portion of lifes genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogenfixing bacteria are responsible for c. 5‐20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.

3,673 citations

Journal ArticleDOI
TL;DR: A large-scale meta-analysis of experimental enrichments shows that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems.
Abstract: The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.

3,543 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023128
2022216
2021268
2020185
2019197
2018182