scispace - formally typeset
Search or ask a question

Showing papers by "João G. Crespo published in 2022"


Journal ArticleDOI
TL;DR: In this paper , a nanofiltration pilot system was installed in a wastewater treatment plant to remove six anticancer drugs from wastewater effluents, and the results showed that the removal efficiency was only evaluated for these drugs.

11 citations


Journal ArticleDOI
TL;DR: In this article , the authors explored the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the ion exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards.
Abstract: This work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment. Overall, this work validates the technical feasibility of using RO upcycled AEMs in DD and IEMB processes for nitrate removal. This membrane recycling concept might also find applications for the removal and/or recovery of other target negatively charged species.

10 citations


Journal ArticleDOI
TL;DR: In this paper, the combined use of the enzyme carbonic anhydrase (CA) and an aqueous solution of choline hydroxide, to effectively absorb CO2 was described.

6 citations


Journal ArticleDOI
TL;DR: In this paper , a systematic experimental methodology was employed to produce oil-in-water (O/W) nanoemulsions by direct membrane emulsification while exploring first-ever studies on using polymeric membranes.

6 citations


Journal ArticleDOI
TL;DR: In this article , a column packed with Macronet® MN102 was used to perform dynamic adsorption and desorption experiments, which showed a maximum ferulic acid adaption capacity of 176 mgferulic acid at pH 4.5 at a flow rate of 3.7 BV.

5 citations


Journal ArticleDOI
TL;DR: The development presented makes fluorescence spectroscopy the most promising solution for monitoring up‐and downstream processes, different biological parameters simultaneously, and different microalgae species.
Abstract: Microalgae industrial production is viewed as a solution for alternative production of nutraceuticals, cosmetics, biofertilizers, and biopolymers. Throughout the years, several technological advances have been implemented, increasing the competitiveness of microalgae industry. However, online monitoring and real‐time process control of a microalgae production factory still require further development. In this mini‐review, non‐destructive tools for online monitoring of cellular agriculture applications are described. Still, the focus is on the use of fluorescence spectroscopy to monitor several parameters (cell concentration, pigments, and lipids) in the microalgae industry. The development presented makes it the most promising solution for monitoring up‐and downstream processes, different biological parameters simultaneously, and different microalgae species. The improvements needed for industrial application of this technology are also discussed.

5 citations


Journal ArticleDOI
TL;DR: In this paper , a detailed characterization of the AEMs (water contact angle, ion exchange capacity, scanning electron microscopy (SEM), cyclic voltammetry (CV), and Fourier Transform Infrared (FTIR) spectra) was carried out, verifying that the presence of such foulants reduces IEC and the maximum current obtained by CV.
Abstract: This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport rate). Moreover, we evaluated the (bio)fouling potential of the membrane using sodium dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and Aeromonas hydrophila as model organic foulants and a biofoulant, respectively. A detailed characterization of the AEMs (water contact angle, ion exchange capacity (IEC), scanning electron microscopy (SEM), cyclic voltammetry (CV), and Fourier Transform Infrared (FTIR) spectra) was carried out, verifying that the presence of such foulants reduces IEC and the maximum current obtained by CV. However, only SDS and SDBS affected the contact angle values. Cleaning of the biofouled membranes using a sodium hypochlorite aqueous solution allows for (partially) recovering their initial properties. Furthermore, this work includes a fouling characterization using real surface and sea water matrixes, confirming the presence of several types of fouling microorganisms in natural streams. A lower adhesion of microorganisms (measured in terms of total bacteria counts) was observed for the modified membranes compared to the unmodified ones. Finally, we propose a cleaning strategy to mitigate biofouling in AEMs that could be easily applied in RED systems for an enhanced long-term process performance.

5 citations


Journal ArticleDOI
TL;DR: In this article , a new azo-POPs were designed due to their "CO2-philic" feature to be incorporated in iongel materials, which resulted in the fabrication of dense and defect-free membranes with improved gas separation performances, in terms of both CO2 permeability (62.3-90.6 barrer) and, CO2/CH4 (9.9-12.1) ideal selectivities, with the latter revealing to be highly dependent on the morphological properties of the azo POPs.

4 citations


Journal ArticleDOI
TL;DR: In this article , an integrated process is proposed for aroma recovery and fractionation from seafood industry aqueous effluents, combining the advantages of organophilic pervaporation and fractionated condensation.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the problem of large volumes of oil mill wastewater (OMW) was solved by using nanofiltration as a possible second stage of treatment, and different membranes were tested under different operating conditions, varying cross flow velocity (CFV) and transmembrane pressure (TMP), in order to obtain a concentrate rich in phenolic compounds and also an adequate permeate able to be returned to the process as machinery cleaning water.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the authors discuss the recovery and fractionation of bio-vanillin, from a bioconversion broth, by pervaporation and by vacuum distillation, coupled with fractionated condensation.
Abstract: The increasing demand for natural products has led to biotechnological vanillin production, which requires the recovery of vanillin (and vanillyl alcohol at trace concentrations, as in botanical vanillin) from the bioconversion broth, free from potential contaminants: the substrate and metabolites of bioconversion. This work discusses the recovery and fractionation of bio-vanillin, from a bioconversion broth, by pervaporation and by vacuum distillation, coupled with fractionated condensation. The objective was to recover vanillin free of potential contaminants, with maximised fluxes and selectivity for vanillin against water and minimised energy consumption per mass of vanillin recovered. In vacuum distillation fractionated condensation, adding several consecutive water pulses to the feed increased the percentage of recovered vanillin. In pervaporation-fractionated condensation and vacuum distillation-fractionated condensation processes, it was possible to recover vanillin and traces of vanillyl alcohol without the presence of potential contaminants. Vacuum distillation–experiments presented higher vanillin fluxes than pervaporation fractionated condensation experiments, 2.7 ± 0.1 g·m−2 h−1 and 1.19 ± 0.01 g·m−2 h−1, respectively. However, pervaporation fractionated condensation assures a selectivity of vanillin against water of 4.5 on the pervaporation step (acting as a preconcentration step) and vacuum distillation fractionated condensation requires a higher energy consumption per mass of vanillin recovered when compared with pervaporation– fractionated condensation, 2727 KWh kgVAN−1 at 85 °C and 1361 KWh kgVAN−1 at 75 °C, respectively.

Journal ArticleDOI
19 Jan 2022-Water
TL;DR: In this paper , different treatment processes were tested at the laboratory scale to assess their performance in the removal and inactivation of water quality indicator bacteria and fungi present in wastewater effluents.
Abstract: Natural disasters (such as earthquakes, floods, heatwaves and landslides), isolation and war affect the water access of millions of people worldwide. Developments in the areas of membrane filtration, photolysis and photocatalysis are important for safe water production and water re-use applications. This work aimed to test alternative ways to ensure effective disinfection of wastewater effluents: light-emitting diodes that emit at different wavelengths, photocatalytic membranes, and the combination of the two solutions. The different treatment processes were tested at the laboratory scale to assess their performance in the removal and inactivation of water quality indicator bacteria and fungi present in wastewater effluents. The membranes were found to be effective to retain the microorganisms (rejection values higher than 96%), while three small ultraviolet C light-emitting diodes that emitted light at 255 and 265 nm showed an excellent performance for inactivation (higher than 2.5-log inactivation of total coliforms and Escherichia coli after 10 min of exposure in real wastewater effluents). When photocatalytic membranes are used, ultraviolet A light-emitting diodes ensured effective treatment of the retentate (higher than 65%). The combination of these two processes is extremely promising since it ensures not only the production of a high quality permeate that can be reused, but also the treatment of the retentate.

Journal ArticleDOI
TL;DR: Although additional studies are still needed to fully optimize the entire process, the use of nanofiltration membranes seems to be a promising solution to substantially increase the quality of the treated wastewater effluents.
Abstract: Wastewater reuse for agricultural irrigation still raises important public health issues regarding its safety, due to the increasing presence of emerging contaminants, such as antibiotic resistant bacteria and genes, in the treated effluents. In this paper, the potential for a commercial Desal 5 DK nanofiltration membrane to be used as a tertiary treatment in the wastewater treatment plants for a more effective elimination of these pollutants from the produced effluents was assessed on laboratory scale, using a stainless steel cross-flow cell. The obtained results showed high concentrations of total bacteria and target carbapenem and (fluoro)quinolone resistance genes (blaKPC, blaOXA-48, blaNDM, blaIMP, blaVIM, qnrA, qnrB and qnrS) not only in the discharged, but also in the reused, effluent samples, which suggests that their use may not be entirely safe. Nevertheless, the applied nanofiltration treatment achieved removal rates superior to 98% for the total bacteria and 99.99% for all the target resistance genes present in both DNA and extracellular DNA fractions, with no significant differences for these microbiological parameters between the nanofiltered and the control tap water samples. Although additional studies are still needed to fully optimize the entire process, the use of nanofiltration membranes seems to be a promising solution to substantially increase the quality of the treated wastewater effluents.

Journal ArticleDOI
TL;DR: In this paper , a submerged hybrid reactor was used to test the efficiency of membrane filtration, direct photolysis, as well as ultraviolet-C and ultraviolet-A light-emitting diodes panels.
Abstract: The development of effective disinfection treatment processes is crucial to help the water industry cope with the inevitable challenges resulting from the increase in human population and climate change. Climate change leads to heavy rainfall, flooding and hot weather events that are associated with waterborne diseases. Developing effective treatment technologies will improve our resilience to cope with these events and our capacity to safeguard public health. A submerged hybrid reactor was used to test the efficiency of membrane filtration, direct photolysis (using ultraviolet-C low-pressure mercury lamps, as well as ultraviolet-C and ultraviolet-A light-emitting diodes panels) and the combination of both treatment processes (membrane filtration and photolysis) to retain and inactivate water quality indicator bacteria. The developed photocatalytic membranes effectively retained the target microorganisms that were then successfully inactivated by photolysis and advanced oxidation processes. The new hybrid reactor could be a promising approach to treat drinking water, recreational water and wastewater produced by different industries in small-scale systems. Furthermore, the results obtained with membranes coated with titanium dioxide and copper combined with ultraviolet-A light sources show that the process may be a promising approach to guarantee water disinfection using natural sunlight.

Journal ArticleDOI
TL;DR: In this article , an integrated process that creates value with the costly sardine cooking wastewater effluent is designed, which can be used for feed/pet/aquaculture applications and, from the processing of the resultant aqueous stream by reverse osmosis, a natural flavouring additive can be applied in food/feed.
Abstract: The increase in environmental consciousness and stricter regulations has motivated industries to seek sustainable technologies that allow valorising wastewaters, contributing to the profitability of overall processes. Canning industry effluents, namely sardine cooking wastewater, have a high organic matter load, containing proteins and lipids. Their untreated discharge has a negative environmental impact and an economic cost. This work aims to design an integrated process that creates value with the costly sardine cooking wastewater effluent. The research strategy followed evaluates coagulation/flocculation technologies as pre-treatment of the sardine cooking wastewater followed by reverse osmosis. Two different added-value products were obtained: a solid fraction rich in proteins, lipids (above 20%), and aromas that might be used for feed/pet/aquaculture applications and, from the processing of the resultant aqueous stream by reverse osmosis, a natural flavouring additive, which can be applied in food/feed. Additionally, the permeate from reverse osmosis presents a much lower organic load than the original raw material, which may be reused in the overall process (e.g., as water for washings) or discharged at a lower cost, with environmental benefits and economic savings.

Journal ArticleDOI
TL;DR: In this paper , the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico-Universidade de Lisboa (IST), NOVA School of Science and Technology (NOVS), FCT NOVA and Faculdade de Engenharia (FEUP) aims to provide an historical perspective on the topic.
Abstract: Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico—Universidade de Lisboa (IST), NOVA School of Science and Technology—Universidade Nova de Lisboa (FCT NOVA) and Faculdade de Engenharia—Universidade do Porto (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water–energy–material–food nexus.

Journal ArticleDOI
TL;DR: In this paper , the influence of real food matrices on integrated organophilic pervaporation/fractionated condensation processes was analyzed. But the food matrix does not influence substantial detrimental consequences on the model simulations, which validates and extends the applicability of the model.
Abstract: Due to the lack of studies addressing the influence of real food matrices on integrated organophilic pervaporation/fractionated condensation processes, the present work analyses the impact of the real matrix of sardine cooking wastewaters on the fractionation of aromas. In a previous study, a thermodynamic/material balance model was developed to describe the integrated pervaporation—a fractionated condensation process of aroma recovery from model solutions that emulate seafood industry aqueous effluents, aiming to define the best conditions for off-flavour removal. This work assesses whether the previously developed mathematical model, validated only with model solutions, is also applicable in predicting the fractionation of aromas of different chemical families from real effluents (sardine cooking wastewaters), aiming for off-flavour removals. It was found that the food matrix does not influence substantial detrimental consequences on the model simulations, which validates and extends the applicability of the model.

Journal ArticleDOI
TL;DR: The study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography.
Abstract: This work aims at understanding the attachment mechanisms and stability of proteins on a chromatography medium to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography. In particular, the study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase. Protein G was used to develop a column for antibody purification. The results showed that, at lower protein concentrations (i.e., 0.5 to 1.0 mg·mL−1), protein attachment follows a 1st-order kinetics compatible with the presence of covalent binding between the monolith and the protein. At higher protein concentrations (i.e., up to 10 mg·mL−1), the data preferably fit a 2nd-order kinetics. Such a change reflects a different mechanism in the protein attachment which, at higher concentrations, seems to be governed by physical adsorption resulting in a multilayered protein formation, due to the presence of ligand aggregates. The threshold condition for the prevalence of physical adsorption of BSA was found at a concentration higher than 1.0 mg·mL−1. Based on this result, protein concentrations of 0.7 and 1.0 mg·mL−1 were used for the functionalization of monoliths with protein G, allowing a maximum attachment of 1.43 mg of protein G/g of monolith. This column was then used for IgG binding–elution experiments, which resulted in an antibody attachment of 73.5% and, subsequently, elution of 86%, in acidic conditions. This proved the potential of the amine-functionalized monoliths for application in affinity chromatography.

Journal ArticleDOI
TL;DR: In this paper, a methodology is proposed to immobilise enzymes in stable water-in-oil (W/O) emulsions produced by direct membrane emulsification systems and thereafter impregnated them in the pores of a membrane producing emulsion-based supported liquid membranes.
Abstract: Membrane-based gas separation is a promising unit operation in a low-carbon economy due to its simplicity, ease of operation, reduced energy consumption and portability. A methodology is proposed to immobilise enzymes in stable water-in-oil (W/O) emulsions produced by direct membrane emulsification systems and thereafter impregnated them in the pores of a membrane producing emulsion-based supported liquid membranes. The selected case-study was for biogas (CO2 and CH4) purification. Upon initial CO2 sorption studies, corn oil was chosen as a low-cost and non-toxic bulk phase (oil phase). The emulsions were prepared with Nadir® UP150 P flat-sheet polymeric membranes. The optimised emulsions consisted of 2% Tween 80 (w/w) in corn oil as the continuous phase and 0.5 g.L−1 carbonic anhydrase enzyme with 5% PEG 300 (w/w) in aqueous solution as the dispersed phase. These emulsions were impregnated onto a porous hydrophobic PVDF membrane to prepare a supported liquid membrane for gas separation. Lastly, gas permeability studies indicated that the permeability of CO2 increased by ~15% and that of CH4 decreased by ~60% when compared to the membrane without carbonic anhydrase. Thus, a proof-of-concept for enhancement of CO2 capture using emulsion-based supported liquid membrane was established.


Proceedings ArticleDOI
01 Nov 2022
TL;DR: In this article , an enzyme carbonic anhydrase (CA) was used to capture CO2 by using a bio-based emulsion system for CO2 capture in support liquid membranes.
Abstract: Membrane-based gas separation is an important unit operation in chemical industries due to its simplicity, ease of operation, reduced energy consumption, and compact structure. For gas separation, novel studies were carried out by synthesising enzyme-stabilised systems consisting of emulsion-based supported liquid membranes (E-SLMs) the pores of which pores were impregnated with water-in-oil (W/O) emulsions produced by direct membrane emulsification. This technique has gained attention, as it consumes low energy and is mild and suitable for sensitive enzymes. This case study involves the capture of CO2 by the enzyme carbonic anhydrase (CA). The composition of the oil phase was optimised amongst various edible oils, aiming for the one with the highest CO2 sorption capability. The water phase was optimised based on the stability of the CA enzyme in the aqueous phase in the presence of various surfactants and their concentrations. The optimised emulsions consisted of 2% Tween 80 (w/w) in corn oil as the continuous phase and 0.5 g L−1 CA enzyme with 5% PEG300 (w/w) in aqueous solution as the dispersed phase. The emulsions were prepared with a Microdyn Nadir UP150 polymeric membrane. These emulsions were impregnated onto a hydrophobic PVDF membrane to prepare E-SLM. For comparative studies, liquid membranes were also prepared without the CA enzyme in the emulsions, and a supported liquid membrane (SLM) was prepared by impregnating corn oil onto the membrane. Lastly, the permeabilities of the main components of biogas, CO2, and CH4, through the SLM and E-SLMs, were evaluated. The permeability of CO2 increased (~15%) and CH4 decreased (~60%) through the E-SLM containing CA when compared to the SLM and E-SLM without CA. Subsequently, the selectivity of CO2 increased in the presence of low concentration of CA. This work suggests the enhanced, synergetic effects of carbonic anhydrase within a bio-based emulsion system for CO2 capture.

Journal ArticleDOI
TL;DR: In this article , a mathematical model of fractionated condensation is proposed for predicting the recovery and fractionation of target aromas from red wine fermentation headspaces in order to remove off-flavours.
Abstract: A mathematical model of fractionated condensation is proposed for predicting the recovery and fractionation of target aromas from red wine fermentation headspaces in order to remove off-flavours. The applicability of the model is assessed for two different alternative processes: fractionated condensation and vapour permeation–fractionated condensation. The aromas of the headspace of red wine fermentation are commonly lost through the fermenter venting system and are enhanced by the stripping effect of the produced CO2. To mimic the operating conditions during the red wine fermentation, all experiments were performed at 30 °C with a red wine model solution containing relevant red wine aromas, the cosolvent ethanol at representative concentrations, and CO2. Both studied processes allow for a good recovery of esters in the 2nd condenser, with over 80% of ethyl acetate and isoamyl acetate recovery when using vapour permeation–fractionated condensation and a recovery of 84–96% of all esters when using fractionated condensation. However, only the integrated process of vapour permeation–fractionated condensation achieves a significant decrease in the amount of ethyl phenols (off-flavours compounds) in the 1st condenser, above 50%, as expected due to the use of an organophilic membrane. The developed model was validated experimentally for the integrated process, proving to be a highly valuable tool for the prediction of aroma fractionation, aiming at the removal of off-flavours.

Journal ArticleDOI
TL;DR: In this paper , the potential of 2D fluorescence spectroscopy as a process monitoring tool for MBRs is discussed in view of the actual knowledge and the authors own experience in this field.
Abstract: The monitoring of a membrane bioreactor (MBR) requires the assessment of both biological and membrane performance. Additionally, the development of membrane fouling and the requirements for frequent membrane cleaning are still major concerns during MBR operation, requiring tight monitoring and system characterization. Transmembrane pressure is usually monitored online and allows following the evolution of membrane performance. However, it does not allow distinguishing the fouling mechanisms occurring in the system or predicting the future behavior of the membrane. The assessment of the biological medium requires manual sampling, and the analyses involve several steps that are labor-intensive, with low temporal resolution, preventing real-time monitoring. Two-dimensional fluorescence spectroscopy is a comprehensive technique, able to assess the system status at real-time without disturbing the biological system. It provides large sets of data (system fingerprints) from which meaningful information can be extracted. Nevertheless, mathematical data analysis (such as machine learning) is essential to properly extract the information contained in fluorescence spectra and correlate it with operating and performance parameters. The potential of 2D fluorescence spectroscopy as a process monitoring tool for MBRs is, therefore, discussed in the present work in view of the actual knowledge and the authors’ own experience in this field.


Journal ArticleDOI
TL;DR: The process proposed minimizes fouling phenomena at the membrane surface, making it possible to achieve high permeate fluxes, thus reducing the need for membrane cleaning and, therefore, contributing to an extended membrane lifetime.
Abstract: This work proposes a way to maximize the potential of a Nannochloropsis sp. biorefinery process, through membrane technology, producing an extract enriched in soluble proteins, free from the insoluble protein fraction, with a low lipid content and eliminating the colored chlorophyll-a. This procedure, following the principles of a circular economy approach, allows for the valorization of a stream from the biorefining of Nannochloropsis sp. that, otherwise, would be considered a residue without commercial value. The process proposed minimizes fouling phenomena at the membrane surface, making it possible to achieve high permeate fluxes, thus reducing the need for membrane cleaning and, therefore, contributing to an extended membrane lifetime. Supernatant obtained after centrifugation of a suspension of ruptured Nannochloropsis sp. cells was processed by ultrafiltration using a membrane with a cut-off of 100 kDa MWCO. Two different operating approaches were evaluated—controlled transmembrane pressure and controlled permeate flux—under concentration and diafiltration modes. Ultrafiltration operated in a diafiltration mode, under controlled permeate flux conditions, led to the highest soluble protein recovery (78%) with the highest constant permeate flux (12 L·m−2·h−1) and low membrane fouling.