scispace - formally typeset
Search or ask a question

Showing papers by "John W. Krakauer published in 2016"


Journal ArticleDOI
TL;DR: It is proposed that the basal ganglia evolved from a circuit that in lower vertebrates and some mammals is sufficient to directly command simple or stereotyped movements to one that indirectly controls the vigor of goal-directed movements.

194 citations


Journal ArticleDOI
TL;DR: It is shown that the reaction time for a reaching movement does not reflect the moment that the movement becomes ready to execute, and is determined by a separate initiation process, providing an explanation for the sluggishness of typical reaction times.
Abstract: Initiating a movement in response to a visual stimulus takes significantly longer than might be expected on the basis of neural transmission delays, but it is unclear why. In a visually guided reaching task, we forced human participants to move at lower-than-normal reaction times to test whether normal reaction times are strictly necessary for accurate movement. We found that participants were, in fact, capable of moving accurately ∼80 ms earlier than their reaction times would suggest. Reaction times thus include a seemingly unnecessary delay that accounts for approximately one-third of their duration. Close examination of participants' behavior in conventional reaction-time conditions revealed that they generated occasional, spontaneous errors in trials in which their reaction time was unusually short. The pattern of these errors could be well accounted for by a simple model in which the timing of movement initiation is independent of the timing of movement preparation. This independence provides an explanation for why reaction times are usually so sluggish: delaying the mean time of movement initiation relative to preparation reduces the risk that a movement will be initiated before it has been appropriately prepared. Our results suggest that preparation and initiation of movement are mechanistically independent and may have a distinct neural basis. The results also demonstrate that, even in strongly stimulus-driven tasks, presentation of a stimulus does not directly trigger a movement. Rather, the stimulus appears to trigger an internal decision whether to make a movement, reflecting a volitional rather than reactive mode of control.

182 citations


Journal ArticleDOI
TL;DR: It is argued that a fundamental understanding of neurologic recovery will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation.
Abstract: Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

131 citations


Journal ArticleDOI
TL;DR: New ischemia can reopen a sensitive period of heightened responsiveness to training and mediate full recovery from a previous stroke, as shown in mice with incomplete recovery after a first stroke in CFA.
Abstract: Background and objective. Prior studies have suggested that after stroke there is a time-limited period of increased responsiveness to training as a result of heightened plasticity—a sensitive period thought to be induced by ischemia itself. Using a mouse model, we have previously shown that most training-associated recovery after a caudal forelimb area (CFA) stroke occurs in the first week and is attributable to reorganization in a medial premotor area (AGm). The existence of a stroke-induced sensitive period leads to the counterintuitive prediction that a second stroke should reopen this window and promote full recovery from the first stroke. To test this prediction, we induced a second stroke in the AGm of mice with incomplete recovery after a first stroke in CFA. Methods. Mice were trained to perform a skilled prehension (reach-to-grasp) task to an asymptotic level of performance, after which they underwent photocoagulation-induced stroke in CFA. After a 7-day poststroke delay, the mice were then retr...

68 citations


Journal ArticleDOI
TL;DR: It is found that the preparation of intentionally curved reaching movements that navigate paths around obstacles incurred a large reaction-time cost, which could not be attributed to nonmotor task requirements and was independent of the execution difficulty of the movement.
Abstract: Interactions with our environment require curved movements that depend not only on the final position of the hand but also on the path used to achieve it. Current studies in motor control, however, largely focus on point-to-point movements and do not consider how movements with specific desired trajectories might arise. In this study, we examined intentionally curved reaching movements that navigate paths around obstacles. We found that the preparation of these movements incurred a large reaction-time cost. This cost could not be attributed to nonmotor task requirements (e.g., stimulus perception) and was independent of the execution difficulty (i.e., extent of curvature) of the movement. Additionally, this trajectory representation cost was not observed for point-to-point reaches but could be optionally included if the task encouraged consideration of straight trajectories. Therefore, when the path of a movement is task relevant, the shape of the desired trajectory is overtly represented as a stage of motor planning. This trajectory representation ability may help explain the vast repertoire of human motor behaviors.

33 citations


Posted ContentDOI
07 Oct 2016-bioRxiv
TL;DR: A novel paradigm is developed, which independently quantifies these two aspects of hand function, to track hand recovery in 54 patients with hemiparesis over the first year after their stroke, which revealed that most strength recovery, along with some individuation, can be attributed to descending systems other than the CST, whereas further recovery of individuated is CST dependent.
Abstract: Loss of hand function after stroke is a major cause of long-term disability. Hand function can be partitioned into strength and independent control of fingers (individuation). Here we developed a novel paradigm, which independently quantifies these two aspects of hand function, to track hand recovery in 54 patients with hemiparesis over the first year after their stroke. Most recovery of both strength and individuation occurred in the first three months after stroke. Improvement in strength and individuation were tightly correlated up to a strength level of approximately 60% of the unaffected side. Beyond this threshold, further gains in strength were not accompanied by improvements in individuation. Any observed improvements in individuation beyond the 60% threshold were attributable instead to a second independent stable factor. Lesion analysis revealed that damage to the hand area in motor cortex and the corticospinal tract (CST) correlated more with individuation than with strength. CST involvement correlated with individuation even after factoring out the strength-individuation correlation. The most parsimonious explanation for these behavioral and lesion-based findings is that most strength recovery, along with some individuation, can be attributed to descending systems other than the CST, whereas further recovery of individuation is CST dependent.

5 citations