Author
Jose Enrique Antonio-Lopez
Bio: Jose Enrique Antonio-Lopez is an academic researcher from University of Central Florida. The author has contributed to research in topics: Optical fiber & Multi-mode optical fiber. The author has an hindex of 21, co-authored 143 publications receiving 1449 citations.
Topics: Optical fiber, Multi-mode optical fiber, Fiber laser, Laser, Fiber
Papers
More filters
[...]
TL;DR: A compact, low loss, and highly sensitive optical fiber curvature sensor is presented, which allows for using either visibility or spectral shift for sensor interrogation when the device is bent.
Abstract: A compact, low loss, and highly sensitive optical fiber curvature sensor is presented. The device consists of a few-millimeter-long piece of seven-core fiber spliced between two single-mode fibers. When the optical fiber device is kept straight, a pronounced interference pattern appears in the transmission spectrum. However, when the device is bent, a spectral shift of the interference pattern is produced, and the visibility of the interference notches changes. This allows for using either visibility or spectral shift for sensor interrogation. The dynamic range of the device can be tailored through the proper selection of the length of the seven-core fiber. The effects of temperature and refractive index of the external medium on the response of the curvature sensor are also discussed. Linear sensitivity of about 3000 nm/mm−1 for bending was observed experimentally.
122 citations
[...]
TL;DR: Low-loss all-fiber photonic lantern (PL) mode multiplexers capable of selectively exciting the first six fiber modes of a multimode fiber and the use of graded index fibers in a PL eases the length requirements of the adiabatic tapered transition and could enable scaling to large numbers are demonstrated.
Abstract: Low-loss all-fiber photonic lantern (PL) mode multiplexers (MUXs) capable of selectively exciting the first six fiber modes of a multimode fiber (LP01, LP11a, LP11b, LP21a, LP21b, and LP02) are demonstrated. Fabrication of the spatial mode multiplexers was successfully achieved employing a combination of either six step or six graded index fibers of four different core sizes. Insertion losses of 0.2-0.3 dB and mode purities above 9 dB are achieved. Moreover, it is demonstrated that the use of graded index fibers in a PL eases the length requirements of the adiabatic tapered transition and could enable scaling to large numbers.
121 citations
[...]
TL;DR: In this paper, a fiber-optic liquid level sensor based on multimode interference (MMI) effects is proposed and demonstrated, which can discriminate the refractive index (RI) of the liquid during the level measurement.
Abstract: A fiber-optic liquid level sensor based on multimode interference (MMI) effects is proposed and demonstrated. We show that MMI and self-image effects can be effectively applied for multiplexed liquid level sensing, because the natural response as a band-pass filter for each sensor is clearly distinct from each other, in the case for several sensors working at the same time. Using a standard 105/125 step-index multimode fiber (MMF) a simple discrete level sensor was fabricated, that can also discriminate the refractive index (RI) of the liquid during the level measurement. The MMI liquid level sensors are not only inexpensive, but their fabrication is simple.
68 citations
[...]
TL;DR: A table-top, broadband, coherent mid-infrared light source that offers a compact and bright alternative to a synchrotron in the 4−18 µm spectral range has been developed by a German-US research team.
Abstract: The development of high-power, broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications in medical diagnostics, spectroscopy, microscopy, and fundamental science. One of the major, long-standing challenges in improving the performance of these applications has been the construction of compact, broadband mid-infrared radiation sources, which unify the properties of high brightness and spatial and temporal coherence. Due to the lack of such radiation sources, several emerging applications can be addressed only with infrared (IR)-beamlines in large-scale synchrotron facilities, which are limited regarding user access and only partially fulfill these properties. Here, we present a table-top, broadband, coherent mid-infrared light source that provides brightness at an unprecedented level that supersedes that of synchrotrons in the wavelength range between 3.7 and 18 µm by several orders of magnitude. This result is enabled by a high-power, few-cycle Tm-doped fiber laser system, which is employed as a pump at 1.9 µm wavelength for intrapulse difference frequency generation (IPDFG). IPDFG intrinsically ensures the formation of carrier-envelope-phase stable pulses, which provide ideal prerequisites for state-of-the-art spectroscopy and microscopy. A table-top-sized, coherent light source that offers a compact and bright alternative to a synchrotron in the 4−18 µm spectral range has been developed by a German-US research team. The team used a novel ultrashort (16 fs) pulse, high power Tm-doped fiber laser operating at 1.9 µm to induce a nonlinear frequency downconversion process called intrapulse difference frequency generation in a crystal of GaSe. The broad spectral coverage and high brightness render this mid-infrared source a unique tool for state-of-the art spectroscopy and microscopy. The team says that the compactness and simplicity of the presented approach brings exciting prospects for the future accessibility, in particular for emerging applications that are currently addressed only with mid-infrared beamlines in large-scale synchrotron facilities.
68 citations
[...]
TL;DR: A bending sensor is demonstrated using the combination of a mode-selective photonic lantern (PL) and a multicore fiber, which reveals a high sensitivity to bending curvature and differential power distributions according to bending direction, without the need for spectral measurements.
Abstract: A bending sensor is demonstrated using the combination of a mode-selective photonic lantern (PL) and a multicore fiber. A short section of three-core fiber with strongly coupled cores is used as the bend sensitive element. The supermodes of this fiber are highly sensitive to the refractive index profiles of the cores. Small bend-induced changes result in drastic changes of the supermodes, their excitation, and interference. The multicore fiber is spliced to a few-mode fiber and excites bend dependent amounts of each of the six linearly polarized (LP) modes guided in the few-mode fiber. A mode selective PL is then used to demultiplex the modes of the few-mode fiber. Relative power measurements at the single-mode PL output ports reveal a high sensitivity to bending curvature and differential power distributions according to bending direction, without the need for spectral measurements. High direction sensitivity is demonstrated experimentally as well as in numerical simulations. Relative power shifts of up to 80% have been measured at radii of approximately 20 cm, and good sensitivity was observed with radii as large as 10 m, making this sensing system useful for applications requiring both large and small curvature measurements.
64 citations
Cited by
More filters
Book•
[...]
01 Jan 2006
TL;DR: Theorems and Formulas used in this chapter relate to theorems in optical waveguides and lightwave Circuits that describe the behaviour of Planar Waveguides through the response of the E-modulus effect.
Abstract: Preface 1. Wave Theory of Optical Waveguides 2. Planar Optical Waveguides 3. Optical Fibers 4. Couple Mode Theory 5. Nonlinear Optical Effects in Optical Fibers 6. Finite Element Method 7. Beam Propagation Method 8. Staircase Concatention Method 9. Planar Lightwave Circuits 10. Theorems and Formulas Appendix
359 citations
[...]
TL;DR: It is shown that the MMFC diameter has significant influence on the refractive index (RI) sensitivity but the length does not, and a refractometer with a lower MM FC diameter has a higher sensitivity.
Abstract: We have investigated the influence of multimode fiber core (MMFC) diameters and lengths on the sensitivity of an SMS fiber based refractometer. We show that the MMFC diameter has significant influence on the refractive index (RI) sensitivity but the length does not. A refractometer with a lower MMFC diameter has a higher sensitivity. Experimental investigations achieved a maximum sensitivity of 1815 nm/ RIU (refractive index unit) for a refractive index range from 1.342 to 1.437 for a refractometer with a core diameter of 80 μm. The experimental results fit well with the numerical simulation results.
336 citations
[...]
TL;DR: In this article, the authors propose a low-loss interface between single-mode and multimode systems, where the precise optical mapping between cores and individual modes is unimportant, by merging several singlemode cores into one multimode core.
Abstract: Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems, where the precise optical mapping between cores and individual modes is unimportant.
302 citations
[...]
Lawrence Livermore National Laboratory1, University of Rochester2, Rutherford Appleton Laboratory3, École Polytechnique4, Ohio State University5, University of Michigan6, University of Jena7, Russian Academy of Sciences8, Osaka University9, Academy of Sciences of the Czech Republic10, Chinese Academy of Sciences11, Shanghai Jiao Tong University12, Gwangju Institute of Science and Technology13, Colorado State University14, University of Szeged15
TL;DR: In this paper, the authors provide a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed, and what technologies are to be deployed to get to these new regimes, and some critical issues facing their development.
Abstract: In the 2015 review paper 'Petawatt Class Lasers Worldwide' a comprehensive overview of the current status of highpower facilities of >200 TW was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multidisciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development.
277 citations