scispace - formally typeset
Search or ask a question

Showing papers by "Jun Minagawa published in 2019"


Journal ArticleDOI
TL;DR: High-resolution cryo-EM structures of Chlamydomonas light-harvesting complex II (LHCII)–photosystem II (PSII) supercomplexes show loosely and moderately associated LHCIIs forming multiple pathways for energy transfer to PSII reaction centres.
Abstract: Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In Chlamydomonas reinhardtii, LHCII molecules associate with photosystem II (PSII) to form various supercomplexes, including the C2S2M2L2 type, which is the largest PSII-LHCII supercomplex in algae and plants that is presently known. Here, we report high-resolution cryo-electron microscopy (cryo-EM) maps and structural models of the C2S2M2L2 and C2S2 supercomplexes from C. reinhardtii. The C2S2 supercomplex contains an LhcbM1-LhcbM2/7-LhcbM3 heterotrimer in the strongly associated LHCII, and the LhcbM1 subunit assembles with CP43 through two interfacial galactolipid molecules. The loosely and moderately associated LHCII trimers interact closely with the minor antenna complex CP29 to form an intricate subcomplex bound to CP47 in the C2S2M2L2 supercomplex. A notable direct pathway is established for energy transfer from the loosely associated LHCII to the PSII reaction centre, as well as several indirect routes. Structure-based computational analysis on the excitation energy transfer within the two supercomplexes provides detailed mechanistic insights into the light-harvesting process in green algae.

97 citations


Journal ArticleDOI
TL;DR: Spectroscopic measurements of the PSI–LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI.

40 citations


Journal ArticleDOI
TL;DR: It is demonstrated that corals attract Symbiodinium using their endogenous GFP-related green fluorescence, revealing a biological signaling mechanism that underlies the success of this symbioses that is the building block of coral reef ecosystems.
Abstract: Reef-building corals thrive in nutrient-poor marine environments because of an obligate symbiosis with photosynthetic dinoflagellates of the genus Symbiodinium. Symbiosis is established in most corals through the uptake of Symbiodinium from the environment. Corals are sessile for most of their life history, whereas free-living Symbiodinium are motile; hence, a mechanism to attract Symbiodinium would greatly increase the probability of encounter between host and symbiont. Here, we examined whether corals can attract free-living motile Symbiodinium by their green fluorescence, emitted by the excitation of endogenous GFP by purple-blue light. We found that Symbiodinium have positive and negative phototaxis toward weak green and strong purple-blue light, respectively. Under light conditions that cause corals to emit green fluorescence, (e.g., strong blue light), Symbiodinium were attracted toward live coral fragments. Symbiodinium were also attracted toward an artificial green fluorescence dye with similar excitation and emission spectra to coral-GFP. In the field, more Symbiodinium were found in traps painted with a green fluorescence dye than in controls. Our results revealed a biological signaling mechanism between the coral host and its potential symbionts.

37 citations


Journal ArticleDOI
TL;DR: The transcription factors CONSTANS and Nuclear transcription Factor Ys (NF-Ys) form a complex that governs light-dependent photoprotective responses in C. reinhardtii and this complex can prevent photodamage in response to excess light.
Abstract: Light is essential for photosynthesis, but the amounts of light that exceed an organism's assimilation capacity can result in oxidative stress and even cell death. Plants and microalgae have developed a photoprotective response mechanism, qE, that dissipates excess light energy as thermal energy. In the green alga Chlamydomonas reinhardtii, qE is regulated by light-inducible photoprotective proteins, but the pathway from light perception to qE is not fully understood. Here, we show that the transcription factors CONSTANS and Nuclear transcription Factor Ys (NF-Ys) form a complex that governs light-dependent photoprotective responses in C. reinhardtii. The qE responses do not occur in CONSTANS or NF-Y mutants. The signal from light perception to the CONSTANS/NF-Ys complex is directly inhibited by the SPA1/COP1-dependent E3 ubiquitin ligase. This negative regulation mediated by the E3 ubiquitin ligase and the CONSTANS/NF-Ys complex is common to photoprotective response in algal photosynthesis and flowering in plants.

37 citations


Journal ArticleDOI
TL;DR: It is found that the interprotein distances within the light-harvesting complex array in the green algal photosystem are larger than those previously observed in higher plants, indicating that the potential route of energy transfer in the PSII–LHCII supercomplex in green algae may be altered.

31 citations


Journal ArticleDOI
TL;DR: A photoprotective role for the putative E3 ubiquitin ligase CUL4–DDB1DET1 in unicellular photosynthetic organisms that may mediate blue-light signals to LH CSR1 and LHCSR3 gene expression is suggested.
Abstract: Light is essential for photosynthesis, but the amounts of light that exceed an organism's assimilation capacity can cause serious damage1. Photosynthetic organisms minimize such potential harm through protection mechanisms collectively referred to as non-photochemical quenching2. One mechanism of non-photochemical quenching called energy-dependent quenching (qE quenching) is readily activated under high-light conditions and dissipates excess energy as heat. LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEINS 1 and 3 (LHCSR1 and LHCSR3) have been proposed to mediate qE quenching in the green alga Chlamydomonas reinhardtii when grown under high-light conditions3. LHCSR3 induction requires a blue-light photoreceptor, PHOTOTROPIN (PHOT)4, although the signal transduction pathway between PHOT and LHCSR3 is not yet clear. Here, we identify two phot suppressor loci involved in qE quenching: de-etiolated 1 (det1)5 and damaged DNA-binding 1 (ddb1)6. Using a yeast two-hybrid analysis and an inhibitor assay, we determined that these two genetic elements are part of a protein complex containing CULLIN 4 (CUL4). These findings suggest a photoprotective role for the putative E3 ubiquitin ligase CUL4-DDB1DET1 in unicellular photosynthetic organisms that may mediate blue-light signals to LHCSR1 and LHCSR3 gene expression.

28 citations


Journal ArticleDOI
TL;DR: A new procedure for purifying the PSII–LHCII supercomplexes of Chlamydomonas reinhardtii employing amphipol A8‐35 is developed and showed little LHCII dissociation even 4 days after purification.

25 citations


Journal ArticleDOI
TL;DR: A systematic screening protocol is established for UV-inducible LHCSR1 gene expression mutants using a bioluminescence reporter assay and characterization revealed that the obtained mutants could be separated into 3 different phenotype groups, which provided further insight into photoprotective signal transduction in C. reinhardtii.
Abstract: In photosynthetic organisms, photoprotection to avoid overexcitation of photosystems is a prerequisite for survival. Green algae have evolved light-inducible photoprotective mechanisms mediated by genes such as light-harvesting complex stress-related (LHCSR). Studies on the light-dependent regulation of LHCSR expression in the green alga Chlamydomonas reinhardtii have revealed that photoreceptors for blue light (phototropin) and ultraviolet light perception (UVR8) play key roles in initiating photoprotective signal transduction. Although initial light perception via phototropin or UVR8 is known to result in increased LHCSR3 and LHCSR1 gene expression, respectively, the mechanisms of signal transduction from the input (light perception) to the output (gene expression) remain unclear. In this study, to further elucidate the signal transduction pathway of the photoprotective response of green algae, we established a systematic screening protocol for UV-inducible LHCSR1 gene expression mutants using a bioluminescence reporter assay. Following random mutagenesis screening, we succeeded in isolating mutants deficient in LHCSR1 gene and protein expression after UV illumination. Further characterization revealed that the obtained mutants could be separated into 3 different phenotype groups, the "UV-specific", "LHCSR1-promoter/transcript-specific" and "general photoprotective" mutant groups, which provided further insight into photoprotective signal transduction in C. reinhardtii.

16 citations


Journal ArticleDOI
TL;DR: The authors' data suggest that heat stress alters gene expression in both the hosts and symbionts, which may affect the lysosome-mediated degradation and transportation of substrates such as carbohydrates through the symbiosome membrane, which potentially might attenuate the stability of symbiosis and lead to bleaching-associated symbiotic state transition.
Abstract: Stable endosymbiotic relationships between cnidarian animals and dinoflagellate algae are vital for sustaining coral reef ecosystems. Recent studies have shown that elevated seawater temperatures can cause the collapse of their endosymbiosis, known as 'bleaching', and result in mass mortality. However, the molecular interplay between temperature responses and symbiotic states still remains unclear. To identify candidate genes relevant to the symbiotic stability, we performed transcriptomic analyses under multiple conditions using the symbiotic and apo-symbiotic (symbiont free) Exaiptasia diaphana, an emerging model sea anemone. Gene expression patterns showed that large parts of differentially expressed genes in response to heat stress were specific to the symbiotic state, suggesting that the host sea anemone could react to environmental changes in a symbiotic state-dependent manner. Comparative analysis of expression profiles under multiple conditions highlighted candidate genes potentially important in the symbiotic state transition under heat-induced bleaching. Many of these genes were functionally associated with carbohydrate and protein metabolisms in lysosomes. Symbiont algal genes differentially expressed in hospite encode proteins related to heat shock response, calcium signaling, organellar protein transport, and sugar metabolism. Our data suggest that heat stress alters gene expression in both the hosts and symbionts. In particular, heat stress may affect the lysosome-mediated degradation and transportation of substrates such as carbohydrates through the symbiosome (phagosome-derived organelle harboring symbiont) membrane, which potentially might attenuate the stability of symbiosis and lead to bleaching-associated symbiotic state transition.

10 citations


Journal ArticleDOI
TL;DR: Results indicate that this green alga contains four types of LHCII trimer with different biochemical and spectroscopic features, and discusses the function and structural organization of green algal LHC II antennae.
Abstract: Light-harvesting complex II (LHCII) absorbs light energy and transfers it primarily to photosystem II in green algae and land plants. Although the trimeric structure of LHCII is conserved between the two lineages, its subunit composition and function are believed to differ significantly. In this study, we purified four LHCII trimers from the green alga Chlamydomonas reinhardtii and analyzed their biochemical properties. We used several preparation methods to obtain four distinct fractions (fractions 1–4), each of which contained an LHCII trimer with different contents of Type I, III, and IV proteins. The pigment compositions of the LHCIIs in the four fractions were similar. The absorption and fluorescence spectra were also similar, although the peak positions differed slightly. These results indicate that this green alga contains four types of LHCII trimer with different biochemical and spectroscopic features. Based on these findings, we discuss the function and structural organization of green algal LHCII antennae.

10 citations


Journal ArticleDOI
TL;DR: The results of the relative quantitative evaluation of photosystem subunits in Chlamydomonas and Synechocystis grown under high-light conditions were consistent with those of previous studies, suggesting the diverse functions of NDH-1 protein.

Journal ArticleDOI
TL;DR: It is demonstrated that the binding properties of light-harvesting complex proteins (LHCs) in a photosystem II (PSII) supercomplex regulated by pH conditions, which primarily responded to environmental light conditions, were responsive to pH conditions using a thermodynamic dissociation kinetics analysis.
Abstract: Reorganization of photosynthetic proteins on the thylakoid membrane is an important regulatory process for photoacclimation in photosynthetic organisms. However, the underlying mechanism has been poorly understood due to the lack of methods to analyze the interactions between membrane proteins. To investigate the mechanism, we demonstrated the binding properties of light-harvesting complex proteins (LHCs) in a photosystem II (PSII) supercomplex regulated by pH conditions, which primarily responded to environmental light conditions, using a thermodynamic dissociation kinetics analysis. The results showed that the strongly bound LHCs (∼60%) were responsive to pH conditions, whereas the moderately and loosely bound LHCs (∼40%) were nonresponsive. This result implies that the pH condition alters the binding properties of LHCs in the PSII supercomplex, inducing the reorganization of protein complexes.

Patent
26 Feb 2019
TL;DR: In this article, a method for generating an oil/fat component by means of culturing algae, in which marine algae belonging to chlamydomonas are cultured in a culture medium containing sea salt.
Abstract: There is provided a method for generating an oil/fat component by means of culturing algae, in which marine algae belonging to chlamydomonas are cultured in a culture medium containing sea salt.