scispace - formally typeset
Open AccessJournal ArticleDOI

Cold and ultracold molecules: science, technology and applications

TLDR
A review of the current state of the art in the research field of cold and ultracold molecules can be found in this paper, where a discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in rapidly expanding research field.
Abstract
This paper presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the focus issue of New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few-body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Bose-Einstein condensation in a gas of sodium atoms

TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Journal ArticleDOI

Quantum simulations with ultracold quantum gases

TL;DR: In this paper, a review of advances in this field is presented and discussed the possibilities offered by this approach to quantum simulation, as well as the possibilities of quantum simulation with ultracold quantum gases.
Journal ArticleDOI

Quantum Phase Transitions

TL;DR: In this paper, the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems is discussed.
Journal ArticleDOI

The physics of dipolar bosonic quantum gases

TL;DR: In this paper, a review of the recent theoretical and experimental advances in the study of ultra-cold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases is presented.

Emergence of a molecular Bose-Einstein condensate from a Fermi gas

Cindy Regal
TL;DR: In this paper, a molecular Bose-Einstein condensate was shown to be created by adjusting the interaction strength in an ultracold Fermi gas of atoms.
References
More filters
Book

Quantum Computation and Quantum Information

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Journal ArticleDOI

Quantum computation and quantum information

TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.
Journal ArticleDOI

Simulating physics with computers

TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Journal ArticleDOI

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Related Papers (5)