scispace - formally typeset
Search or ask a question

Showing papers by "Katharina Wimmer published in 2004"


Journal ArticleDOI
TL;DR: The results provide evidence that PLAG1 overexpression may be responsible for the frequently observed up‐regulation of IGF2 in hepatoblastoma and therefore may be implicated in the molecular pathogenesis of this childhood neoplasia.
Abstract: There is evidence that 8q amplification is associated with poor prognosis in hepatoblastoma. A previous comparative genomic hybridization analysis identified a critical region in chromosomal bands 8q11.2-q13. Using restriction landmark genomic scanning in combination with a virtual genome scan, we showed that this region is delineated by sequences within contig NT_008183 of chromosomal subbands 8q11.22-q11.23. A real-time PCR-based genomic copy number assay of 20 hepatoblastomas revealed gain or amplification in this critical chromosomal region in eight tumors. The expression of four genes and expressed sequence tags (ESTs) within this newly defined region was assayed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in four tumors with and six tumors without gain or amplification. The PLAG1 oncogene was found to be highly expressed in all but one tumor compared to normal liver tissue. Furthermore, quantitative RT-PCR revealed that the expression level of the developmentally regulated transcription factor PLAG1 was 3-12 times greater in hepatoblastoma tumors and cell lines compared to age-matched normal liver and comparable to the expression in fetal liver tissue. PLAG1 has been shown be a transcriptional activator of IGF2 in other tumor types. Using luciferase reporter assays, we demonstrated that PLAG1 transactivates transcription from the embryonic IGF2 promoter P3, also in hepatoblastoma cell lines. Thus, our results provide evidence that PLAG1 overexpression may be responsible for the frequently observed up-regulation of IGF2 in hepatoblastoma and therefore may be implicated in the molecular pathogenesis of this childhood neoplasia.

113 citations


Journal ArticleDOI
TL;DR: The results suggest that the wild‐type sequences function as ESE elements, whose disruption is responsible for the mutation‐associated exon skipping observed in the NF1 patients, and illustrates the utility of ESE‐prediction programs for delineating candidate sequences that may serve as E SE elements.
Abstract: Nonsense, missense, and even silent mutation-associated exon skipping is recognized in an increasing number of genes as a novel form of splicing mutation. The analysis of individual mutations of this kind can shed light on basic pre-mRNA splicing mechanisms. Using cDNA-based mutation detection analysis, we have identified one missense and six nonsense mutations that lead to different extents of exon-lacking transcripts in neurofibromatosis type 1 (NF1) patients. We confirmed mutation-associated exon skipping in a heterologous hybrid minigene context. There is evidence that the disruption of functional exonic splicing enhancer (ESE) sequences is frequently the mechanism underlying mutation-associated exon skipping. Therefore, we examined the wild-type and mutant NF1 sequences with two available ESE-prediction programs. Either or both programs predicted the disruption of ESE motifs in six out of the seven analyzed mutations. To ascertain the function of the predicted ESEs, we quantitatively measured their ability to rescue splicing of an enhancer-dependent exon, and found that all seven mutant ESEs had reduced splicing enhancement activity compared to the wild-type sequences. Our results suggest that the wild-type sequences function as ESE elements, whose disruption is responsible for the mutation-associated exon skipping observed in the NF1 patients. Further, this study illustrates the utility of ESE-prediction programs for delineating candidate sequences that may serve as ESE elements. However, until more refined prediction algorithms have been developed, experimental data, preferably from patient tissues, remain indispensable to assess the clinical significance, particularly of missense and silent mutations, and to understand the structure-function relationship in the corresponding protein.

101 citations


Journal ArticleDOI
TL;DR: It is demonstrated that 11q amplicons in AML/MDS patients display a complex organization and have provided evidence for coamplification of two additional regions on the long arm of chromosome 11 that may harbor candidate target genes.
Abstract: Amplification within chromosome arm 11q involving the mixed-lineage leukemia gene (MLL) locus is a rare but recurrent aberration in acute myeloid leukemia and myelodysplastic syndrome (AML/MDS). We and others have observed that 11q amplifications in most AML/MDS cases have not been restricted to the chromosomal region surrounding the MLL gene. Therefore, we implemented a strategy to characterize comprehensively 11q amplicons in a series of 13 AML/MDS patients with MLL amplification. Analysis of 4 of the 13 cases by restriction landmark genomic scanning in combination with virtual genome scan and by matrix-based comparative genomic hybridization demonstrated that the 11q amplicon in these four cases consisted of at least three discontinuous sequences derived from different regions of the long arm of chromosome 11. We defined a maximally 700-kb sequence around the MLL gene that was amplified in all cases. Apart from the core MLL amplicon, we detected two additional 11q regions that were coamplified. Using fluorescence in situ hybridization (FISH) analysis, we demonstrated that sequences in 11q13.5 and 11q23–24 were amplified in 8 of 13 and 10 of 12 AML/MDS cases, respectively. Both regions harbor a number of potentially oncogenic genes. In all 13 cases, either one or both of these regions were coamplified with the MLL amplicon. Thus, we demonstrated that 11q amplicons in AML/MDS patients display a complex organization and have provided evidence for coamplification of two additional regions on the long arm of chromosome 11 that may harbor candidate target genes. © 2004 Wiley-Liss, Inc.

33 citations