scispace - formally typeset
Search or ask a question

Showing papers in "Human Mutation in 2004"


Journal ArticleDOI
TL;DR: The DRD2 Taq1A RFLP is a single nucleotide polymorphism (SNP) that causes an amino acid substitution within the 11th ankyrin repeat of ANKK1 (p.Glu713Lys), which, while unlikely to affect structural integrity, may affect substrate‐binding specificity.
Abstract: The dopamine D2 receptor has been extensively studied in relation to alcoholism, substance abuse, and nicotine dependence. The most frequently examined polymorphism linked to this gene is the Taq1A restriction fragment length polymorphism (RFLP) (dbSNP rs1800497; g.32806C>T in GenBank AF050737.1), which has been associated with a reduction in D2 receptor density, although this is not universally accepted. The Taq1A RFLP lies 10 kB downstream of DRD2 and may therefore fall within a different coding region than the DRD2 gene or within a regulatory region. Within this downstream region, we have identified a novel kinase gene, named ankyrin repeat and kinase domain containing 1 (ANKK1), which contains a single serine/threonine kinase domain and is expressed at low levels in placenta and whole spinal cord RNA. This gene is a member of an extensive family of proteins involved in signal transduction pathways. The DRD2 Taq1A RFLP is a single nucleotide polymorphism (SNP) that causes an amino acid substitution within the 11th ankyrin repeat of ANKK1 (p.Glu713Lys), which, while unlikely to affect structural integrity, may affect substrate-binding specificity. If this is the case, then changes in ANKK1 activity may provide an alternative explanation for previously described associations between the DRD2 Taq1A RFLP and neuropsychiatric disorders such as addiction.

600 citations


Journal ArticleDOI
TL;DR: A comprehensive mutational analysis of the all known genes in 179 unrelated LCA patients, including 52 familial and 127 sporadic (27/127 consanguineous) cases, and decisional flowcharts directing the molecular analysis of LCA genes in a given case are drawn.
Abstract: Leber congenital amaurosis (LCA) is the earliest and most severe form of all inherited retinal dystrophies, responsible for congenital blindness. Disease-associated mutations have been hitherto reported in seven genes. These genes are all expressed preferentially in the photoreceptor cells or the retinal pigment epithelium but they are involved in strikingly different physiologic pathways resulting in an unforeseeable physiopathologic variety. This wide genetic and physiologic heterogeneity that could largely increase in the coming years, hinders the molecular diagnosis in LCA patients. The genotyping is, however, required to establish genetically defined subgroups of patients ready for therapy. Here, we report a comprehensive mutational analysis of the all known genes in 179 unrelated LCA patients, including 52 familial and 127 sporadic (27/127 consanguineous) cases. Mutations were identified in 47.5% patients. GUCY2D appeared to account for most LCA cases of our series (21.2%), followed by CRB1 (10%), RPE65 (6.1%), RPGRIP1 (4.5%), AIPL1 (3.4%), TULP1 (1.7%), and CRX (0.6%). The clinical history of all patients with mutations was carefully revisited to search for phenotype variations. Sound genotype-phenotype correlations were found that allowed us to divide patients into two main groups. The first one includes patients whose symptoms fit the traditional definition of LCA, i.e., congenital or very early cone-rod dystrophy, while the second group gathers patients affected with severe yet progressive rod-cone dystrophy. Besides, objective ophthalmologic data allowed us to subdivide each group into two subtypes. Based on these findings, we have drawn decisional flowcharts directing the molecular analysis of LCA genes in a given case. These flowcharts will hopefully lighten the heavy task of genotyping new patients but only if one has access to the most precise clinical history since birth.

343 citations


Journal ArticleDOI
TL;DR: The considerable differences in clinical and pathological presentation of patients with MAPT mutations are described and the effect of the different mutations on tau functioning is summarized, together with the genetic evidence for additional causal genes for tau‐positive as well as tau-negative dementia.
Abstract: Tau is a multifunctional protein that was originally identified as a microtubule-associated protein. In patients diagnosed with frontotemporal dementia and parkinsonism linked to chromosome 17, mutations in the gene encoding tau (MAPT) have been identified that disrupt the normal binding of tau to tubulin resulting in pathological deposits of hyperphosphorylated tau. Abnormal filamentous tau deposits have been reported as a pathological characteristic in several other neurodegenerative diseases, including frontotemporal dementia, Pick Disease, Alzheimer disease, argyrophilic grain disease, progressive supranuclear palsy, and corticobasal degeneration. In the last five years, extensive research has identified 34 different pathogenic MAPT mutations in 101 families worldwide. In vitro, cell-free and transfected cell studies have provided valuable information on tau dysfunction and transgenic mice carrying human MAPT mutations are being generated to study the influence of MAPT mutations in vivo. This mutation update describes the considerable differences in clinical and pathological presentation of patients with MAPT mutations and summarizes the effect of the different mutations on tau functioning. In addition, the role of tau as a genetic susceptibility factor is discussed, together with the genetic evidence for additional causal genes for tau-positive as well as tau-negative dementia.

325 citations


Journal ArticleDOI
TL;DR: The current version of the androgen receptor (AR) gene mutations database is described, and a 3D model of the AR ligand‐binding domain (AR LBD) has been added to give a better understanding of gene structure–function relationships.
Abstract: The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 374 to 605, and the number of AR-interacting proteins described has increased from 23 to 70, both over the past 3 years. A 3D model of the AR ligand-binding domain (AR LBD) has been added to give a better understanding of gene structure-function relationships. In addition, silent mutations have now been reported in both androgen insensitivity syndrome (AIS) and prostate cancer (CaP) cases. The database also now incorporates information on the exon 1 CAG repeat expansion disease, spinobulbar muscular atrophy (SBMA), as well as CAG repeat length variations associated with risk for female breast, uterine endometrial, colorectal, and prostate cancer, as well as for male infertility. The possible implications of somatic mutations, as opposed to germline mutations, in the development of future locus-specific mutation databases (LSDBs) is discussed. The database is available on the Internet (http://www.mcgill.ca/androgendb/).

308 citations


Journal ArticleDOI
TL;DR: Two new techniques have recently been described that allow detection of mid‐size deletions by simultaneously screening for the loss or duplication of up to 40 target sequences.
Abstract: Screening for deletions of all or part of genes poses a challenge in the diagnostic laboratory. Numerous methods are available for detecting deletions of a few base pairs or very large deletions, but difficulties arise in detecting deletions of a few kilobases. Two new techniques have recently been described that allow detection of such mid-size deletions by simultaneously screening for the loss or duplication of up to 40 target sequences. These are the multiplex amplification and probe hybridization (MAPH) and the multiplex ligation-dependent probe amplification (MLPA). Both rely on sequence-specific probe hybridization to genomic DNA, followed by amplification of the hybridized probe, and semi-quantitative analysis of the resulting PCR products. The relative peak heights or band intensities from each target indicate their initial concentration. The two techniques differ in the ease with which probes can be generated in house, and the labor intensity of performing the assay.

298 citations


Journal ArticleDOI
TL;DR: The group of phenotypes associated with ARX mutations demonstrates remarkable pleiotropy, but also comprises a nearly continuous series of developmental disorders that begins with hydranencephaly, lissencephally, and agenesis of the corpus callosum, and ends with a series of overlapping syndromes with apparently normal brain structure.
Abstract: We recently identified mutations of ARX in nine genotypic males with X-linked lissencephaly with abnormal genitalia (XLAG), and in several female relatives with isolated agenesis of the corpus callosum (ACC). We now report 13 novel and two recurrent mutations of ARX, and one nucleotide change of uncertain significance in 20 genotypic males from 16 families. Most had XLAG, but two had hydranencephaly and abnormal genitalia, and three males from one family had Proud syndrome or ACC with abnormal genitalia. We obtained detailed clinical information on all 29 affected males, including the nine previously reported subjects. Premature termination mutations consisting of large deletions, frameshifts, nonsense mutations, and splice site mutations in exons 1 to 4 caused XLAG or hydranencephaly with abnormal genitalia. Nonconservative missense mutations within the homeobox caused less severe XLAG, while conservative substitution in the homeodomain caused Proud syndrome. A nonconservative missense mutation near the C-terminal aristaless domain caused unusually severe XLAG with microcephaly and mild cerebellar hypoplasia. In addition, several less severe phenotypes without malformations have been reported, including mental retardation with cryptogenic infantile spasms (West syndrome), other seizure types, dystonia or autism, and nonsyndromic mental retardation. The ARX mutations associated with these phenotypes have included polyalanine expansions or duplications, missense mutations, and one deletion of exon 5. Together, the group of phenotypes associated with ARX mutations demonstrates remarkable pleiotropy, but also comprises a nearly continuous series of developmental disorders that begins with hydranencephaly, lissencephaly, and agenesis of the corpus callosum, and ends with a series of overlapping syndromes with apparently normal brain structure.

293 citations


Journal ArticleDOI
TL;DR: The biological content of the Infevers database is presented, including the introduction of two new entries: Crohn/Blau and Pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA syndrome).
Abstract: The Infevers database (http://fmf.igh.cnrs.fr/infevers/) was established in 2002 to provide investigators with access to a central source of information about all sequence variants associated with periodic fevers: Familial Mediterranean fever (FMF), TNF Receptor Associated Periodic Syndrome (TRAPS), Hyper IgD Syndrome (HIDS), Familial Cold Autoinflammatory Syndrome/Muckle-Wells Syndrome/Chronic Infantile Neurological Cutaneous and Articular Syndrome (FCAS/MWS/CINCA). The prototype of this group of disorders is FMF, a recessive disease characterized by recurrent bouts of unexplained inflammation. FMF is the pivotal member of an expanding family of autoinflammatory disorders, a new term coined to describe illnesses resulting from a defect of the innate immune response. Therefore, we decided to extend the Infevers database to genes connected with autoinflammatory diseases. We present here the biological content of the Infevers database, including the introduction of two new entries: Crohn/Blau and Pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA syndrome). Infevers has a range of query capabilities, allowing for simple or complex interrogation of the database. Currently, the database contains 291 sequence variants in related genes (MEFV, TNFRSF1A, MVK, CARD15, PSTPIP1, and CIAS1), consisting of published data and personal communications, which has revealed or refined the preferential mutational sites for each gene. This database will continue to evolve in its content and to improve in its presentation.

289 citations


Journal ArticleDOI
TL;DR: The involvement of the FBN1‐gene could be demonstrated in at least 91% of all MFS patients (85/93), which strongly suggests that this gene is the predominant, if not the sole, locus for MFS.
Abstract: In order to estimate the contribution of mutations at the fibrillin-1 locus (FBN1) to classical Marfan syndrome (MFS) and to study possible phenotypic differences between patients with an FBN1 mutation vs. without, a comprehensive molecular study of the FBN1 gene in a cohort of 93 MFS patients fulfilling the clinical diagnosis of MFS according to the Ghent nosology was performed. The initial mutation screening by CSGE/SSCP allowed identification of an FBN1-mutation in 73 patients. Next, sequencing of all FBN1-exons was performed in 11 mutation-negative patients, while in nine others, DHPLC was used. This allowed identification of seven and five additional mutations, respectively. Southern blot analysis revealed an abnormal hybridization pattern in one more patient. A total of 23 out of the 85 mutations identified here are reported for the first time. Phenotypic comparison of MFS patients with cysteine-involving mutations vs. premature termination mutations revealed significant differences in ocular and skeletal involvement. The phenotype of the eight patients without proven FBN1 mutation did not differ from the others with respect to the presence of major cardiac, ocular, and skeletal manifestations or positive familial history. Most likely, a portion of FBN1-mutations remains undetected because of technical limitations. In conclusion, the involvement of the FBN1-gene could be demonstrated in at least 91% of all MFS patients (85/93), which strongly suggests that this gene is the predominant, if not the sole, locus for MFS.

215 citations


Journal ArticleDOI
TL;DR: Results document that Noonan syndrome‐associated PTPN11 mutations increase SHP2's basal phosphatase activity, with greater activation when residues directly involved in binding at the interface between the N‐terminal Src homology 2 and protein tyrosine phosphatases domains are altered.
Abstract: Noonan syndrome is a developmental disorder with dysmorphic facies, short stature, cardiac defects, and skeletal anomalies, which can be caused by missense PTPN11 mutations. PTPN11 encodes Src homology 2 domain-containing tyrosine phosphatase 2 (SHP2 or SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factor, hormone, and cytokine receptors. We compared the functional effects of three Noonan syndrome-causative PTPN11 mutations on SHP2's phosphatase activity, interaction with a binding partner, and signal transduction. All SHP2 mutants had significantly increased basal phosphatase activity compared to wild type, but that activity varied significantly between mutants and was further increased after epidermal growth factor stimulation. Cells expressing SHP2 mutants had prolonged extracellular signal-regulated kinase 2 activation, which was ligand-dependent. Binding of SHP2 mutants to Grb2-associated binder-1 was increased and sustained, and tyrosine phosphorylation of both proteins was prolonged. Coexpression of Grb2-associated binder-1-FF, which lacks SHP2 binding motifs, blocked the epidermal growth factor-mediated increase in SHP2's phosphatase activity and resulted in a dramatic reduction of extracellular signal-regulated kinase 2 activation. Taken together, these results document that Noonan syndrome-associated PTPN11 mutations increase SHP2's basal phosphatase activity, with greater activation when residues directly involved in binding at the interface between the N-terminal Src homology 2 and protein tyrosine phosphatase domains are altered. The SHP2 mutants prolonged signal flux through the RAS/mitogen-activated protein kinase (ERK2/MAPK1) pathway in a ligand-dependent manner that required docking through Grb2-associated binder-1 (GAB1), leading to increased cell proliferation.

194 citations


Journal ArticleDOI
TL;DR: It is concluded that genetic testing of EYA1 should include analysis of the coding sequence and a screen for complex rearrangements, as well as new criteria for the clinical diagnosis of BOR syndrome.
Abstract: EYA1 mutations cause branchio-oto-renal (BOR) syndrome. These mutations include single nucleotide transitions and transversions, small duplications and deletions, and complex genomic rearrangements. The last cannot be detected by coding sequence analysis of EYA1. We sought to refine the clinical diagnosis of BOR syndrome by analyzing phenotypic data from families segregating EYA1 disease-causing mutations. Based on genotype-phenotype analyses, we propose new criteria for the clinical diagnosis of BOR syndrome. We found that in approximately 40% of persons meeting our criteria, EYA1 mutations were identified. Of these mutations, 80% were coding sequence variants identified by SSCP, and 20% were complex genomic rearrangements identified by a semiquantitative PCR-based screen. We conclude that genetic testing of EYA1 should include analysis of the coding sequence and a screen for complex rearrangements.

189 citations


Journal ArticleDOI
TL;DR: An overview of the currently known CRB1 sequence variants is provided, predict their effect, and a genotype–phenotype correlation model forCRB1 mutations is proposed, which is proposed to solve the puzzle of how the gene influences retinal dystrophies.
Abstract: Mutations in the Crumbs homologue 1 (CRB1) gene have been reported in patients with a variety of autosomal recessive retinal dystrophies, including retinitis pigmentosa (RP) with preserved paraarteriolar retinal pigment epithelium (PPRPE), RP with Coats-like exudative vasculopathy, early onset RP without PPRPE, and Leber congenital amaurosis (LCA). We extended our investigations of CRB1 in these retinal dystrophies, and identified nine novel CRB1 sequence variants. In addition, we screened patients with "classic" RP and classic Coats disease (without RP), but no pathologic sequence variants were found in the CRB1 gene. In total, 71 different sequence variants have been identified on 184 CRB1 alleles of patients with retinal dystrophies, including amino acid substitutions, frameshift, nonsense, and splice site mutations, in-frame deletions, and large insertions. Recent studies in two animal models, mouse and Drosophila, and in vivo high-resolution microscopy in patients with LCA, have shed light on the role of CRB1 in the pathogenesis of retinal dystrophies and its function in the photoreceptors. In this article, we provide an overview of the currently known CRB1 sequence variants, predict their effect, and propose a genotype-phenotype correlation model for CRB1 mutations.

Journal ArticleDOI
TL;DR: Using data from 186 subjects enabled a close linkage to be found between CYP3A4 and CYP2A5 SNPs, especially among the SNPs at c.1026+12 in CYP4 and c.1523 in CYp3A5, which suggested that CYP 3A4and CYP1A5 are within the same gene block.
Abstract: In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A4 in a Japanese population, the distal enhancer and proximal promoter regions, all exons, and the surrounding introns were sequenced from genomic DNA of 416 Japanese subjects. We found 24 SNPs, including 17 novel ones: two in the distal enhancer, four in the proximal promoter, one in the 5′-untranslated region (UTR), seven in the introns, and three in the 3′-UTR. The most common SNP was c.1026+12G>A (IVS10+12G>A), with a 0.249 frequency. Four non-synonymous SNPs, c.554C>G (p.T185S, CYP3A4*16), c.830_831insA (p.E277fsX8, *6), c.878T>C (p.L293P, *18), and c.1088 C>T (p.T363M, *11) were found with frequencies of 0.014, 0.001, 0.028, and 0.002, respectively. No SNP was found in the known nuclear transcriptional factor-binding sites in the enhancer and promoter regions. Using these 24 SNPs, 16 haplotypes were unambiguously identified, and nine haplotypes were inferred by aid of an expectation-maximization-based program. In addition, using data from 186 subjects enabled a close linkage to be found between CYP3A4 and CYP3A5 SNPs, especially among the SNPs at c.1026+12 in CYP3A4 and c.219-237 (IVS3-237, a key SNP site for CYP3A5*3), c.865+77 (IVS9+77) and c.1523 in CYP3A5. This result suggested that CYP3A4 and CYP3A5 are within the same gene block. Haplotype analysis between CYP3A4 and CYP3A5 revealed several major haplotype combinations in the CYP3A4-CYP3A5 block. Our findings provide fundamental and useful information for genotyping CYP3A4 (and CYP3A5) in the Japanese, and probably Asian populations. © 2003 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Genotyping using multiple microsatellite markers may provide a simple, inexpensive, and efficient strategy for screening deletions of the NF1 gene, and can as well be applied for other large genes.
Abstract: A total of 500 unselected unrelated neurofibromatosis 1 (NF1) patients were screened for deletions of the NF1 gene. After excluding 67 patients with known intragenic NF1 mutations, the remaining 433 were genotyped using six intragenic and one distal microsatellite marker for the NF1 gene. A total of 28 patients were hemi- or homozygous for all seven markers and were thus considered as candidates for NF1 deletion with a calculated probability of 99.99%. Metaphase or interphase cells were available from 23 of these 28 individuals for molecular cytogenetics. Fluorescence in situ hybridization (FISH) confirmed an NF1 deletion in 22 (96%) of the 23 patients. Thus, a constitutional deletion of the NF1 gene is responsible for the disease phenotype in at least 4.4% of the 500 unselected NF1 patients. Genotyping using multiple microsatellite markers may provide a simple, inexpensive, and efficient strategy for screening deletions of the NF1 gene, and can as well be applied for other large genes.

Journal ArticleDOI
TL;DR: The results show that a two‐color MLPA assay using only synthetic oligonucleotides provides an attractive alternative for probe design, especially suited for cases in which the number of patients to be tested is limited, making it financially unattractive to invest in cloning.
Abstract: Genomic deletions and duplications play an important role in the etiology of human disease. Versatile tests are required to detect these rearrangements, both in research and diagnostic settings. Multiplex ligation-dependent probe amplification (MLPA) is such a technique, allowing the rapid and precise quantification of up to 40 sequences within a nucleic acid sample using a one-tube assay. Current MLPA probe design, however, involves time-consuming and costly steps for probe generation. To bypass these limitations we set out to use chemically synthesized oligonucleotide probes only. The inherent limitations of this approach are related to oligonucleotide length, and thus the number of probes that can be combined in one assay is also limited. This problem was tackled by designing a two-color assay, combining two sets of probes, each amplified by primers labeled with a different fluorophore. In this way we successfully combined 28 probes in a single reaction. The assay designed was used to screen for the presence of deletions and duplications in patients with hereditary multiple exostoses (HME). Screening 18 patients without detectable point mutations in the EXT1 and EXT2 genes revealed five cases with deletions of one or more exons: four in EXT1 and one in EXT2. Our results show that a two-color MLPA assay using only synthetic oligonucleotides provides an attractive alternative for probe design. The approach is especially suited for cases in which the number of patients to be tested is limited, making it financially unattractive to invest in cloning.

Journal ArticleDOI
TL;DR: An overview of PKHD1 mutations and polymorphisms/sequence variants identified so far is provided to discuss potential genotype–phenotype correlations, and clinical implications are reviewed in the context of their clinical implications.
Abstract: Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of childhood renal- and liver-related morbidity and mortality. The clinical spectrum is widely variable. About 30 to 50% of affected individuals die in the neonatal period, while others survive into adulthood. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene on chromosome 6p12, which is among the largest human genes, with a minimum of 86 exons assembled into a variety of alternatively spliced transcripts. The longest continuous open reading frame is predicted to yield a 4,074-aa (447-kDa) multidomain integral membrane protein (fibrocystin/polyductin) of unknown function. This update compiles all known PKHD1 mutations and polymorphisms/sequence variants. Mutations were found to be scattered throughout the gene without evidence of clustering at specific sites. Most PKHD1 mutations are unique to single families ("private mutations") hampering genotype-phenotype correlations. Correlations have been drawn for the type of mutation rather than for the site of individual mutations. All patients carrying two truncating mutations displayed a severe phenotype with perinatal or neonatal demise, while patients surviving the neonatal period bear at least one missense mutation. However, some missense changes are obviously as devastating as truncating mutations. The present article intends 1) to provide an overview of PKHD1 mutations and polymorphisms/sequence variants identified so far, 2) to discuss potential genotype-phenotype correlations, and 3) to review them in the context of their clinical implications. A constantly updated list of mutations is available online (www.humgen.rwth-aachen.de) and investigators are invited to submit their novel data to this PKHD1 mutation database.

Journal ArticleDOI
TL;DR: The outcome of the analysis underscores the notion that the clinical phenotype of GSDII is largely dictated by the nature of the mutations in the GAA alleles, which makes DNA analysis a valuable tool to help predict the clinical course of the disease.
Abstract: Patients with glycogen storage disease type II (GSDII, Pompe disease) suffer from progressive muscle weakness due to acid alpha-glucosidase deficiency. The disease is inherited as an autosomal recessive trait with a spectrum of clinical phenotypes. We have investigated 29 cases of GSDII and thereby identified 55 pathogenic mutations of the acid alpha-glucosidase gene (GAA) encoding acid maltase. There were 34 different mutations identified, 22 of which were novel. All of the missense mutations and two other mutations with an unpredictable effect on acid alpha-glucosidase synthesis and function were transiently expressed in COS cells. The effect of a novel splice-site mutation was investigated by real-time PCR analysis. The outcome of our analysis underscores the notion that the clinical phenotype of GSDII is largely dictated by the nature of the mutations in the GAA alleles. This genotype-phenotype correlation makes DNA analysis a valuable tool to help predict the clinical course of the disease.

Journal ArticleDOI
TL;DR: Nine examples of nonclassical splicing mutations in 12 A‐T patients are described and cDNA changes to estimates of splice junction strengths based on maximum entropy modeling are compared.
Abstract: Ataxia-telangiectasia (A-T) is an autosomal recessive neurological disorder caused by mutations in the ATM gene. Classical splicing mutations (type I) delete entire exons during pre-mRNA splicing. In this report, we describe nine examples of nonclassical splicing mutations in 12 A-T patients and compare cDNA changes to estimates of splice junction strengths based on maximum entropy modeling. These mutations fall into three categories: pseudoexon insertions (type II), single nucleotide changes within the exon (type III), and intronic changes that disrupt the conserved 3' splice sequence and lead to partial exon deletion (type IV). Four patients with a previously reported type II (pseudoexon) mutation all shared a common founder haplotype. Three patients with apparent missense or silent mutations actually had type III aberrant splicing and partial deletion of an exon. Five patients had type IV mutations that could have been misinterpreted as classical splicing mutations. Instead, their mutations disrupt a splice site and use another AG splice site located nearby within the exon; they lead to partial deletions at the beginning of exons. These nonclassical splicing mutations create frameshifts that result in premature termination codons. Without screening cDNA or using accurate models of splice site strength, the consequences of these genomic mutations cannot be reliably predicted. This may lead to further misinterpretation of genotype-phenotype correlations and may subsequently impact upon gene-based therapeutic approaches.

Journal ArticleDOI
TL;DR: To better understand the mutations causing defects in the CASR gene and to define specific regions relevant for ligand‐receptor interaction and other receptor functions, the data on mutations were collected and the information was centralized inThe CASRdb (www.casrdb.ca), which is easily and quickly accessible by search engines for retrieval of specific information.
Abstract: Familial hypocalciuric hypercalcemia (FHH) is caused by heterozygous loss-of-function mutations in the calcium-sensing receptor (CASR), in which the lifelong hypercalcemia is generally asymptomatic. Homozygous loss-of-function CASR mutations manifest as neonatal severe hyperparathyroidism (NSHPT), a rare disorder characterized by extreme hypercalcemia and the bony changes of hyperparathyroidism, which occur in infancy. Activating mutations in the CASR gene have been identified in several families with autosomal dominant hypocalcemia (ADH), autosomal dominant hypoparathyroidism, or hypocalcemic hypercalciuria. Individuals with ADH may have mild hypocalcemia and relatively few symptoms. However, in some cases seizures can occur, especially in younger patients, and these often happen during febrile episodes due to intercurrent infection. Thus far, 112 naturally-occurring mutations in the human CASR gene have been reported, of which 80 are unique and 32 are recurrent. To better understand the mutations causing defects in the CASR gene and to define specific regions relevant for ligand-receptor interaction and other receptor functions, the data on mutations were collected and the information was centralized in the CASRdb (www.casrdb.mcgill.ca), which is easily and quickly accessible by search engines for retrieval of specific information. The information can be searched by mutation, genotype-phenotype, clinical data, in vitro analyses, and authors of publications describing the mutations. CASRdb is regularly updated for new mutations and it also provides a mutation submission form to ensure up-to-date information. The home page of this database provides links to different web pages that are relevant to the CASR, as well as disease clinical pages, sequence of the CASR gene exons, and position of mutations in the CASR. The CASRdb will help researchers to better understand and analyze the mutations, and aid in structure-function analyses.

Journal ArticleDOI
TL;DR: The first systematic screening of the 27 exons of the CFTR gene for large genomic rearrangements, by means of the quantitative multiplex PCR of short fluorescent fragments (QMPSF), identified and characterized five novel mutations, including one large deletion and four indels.
Abstract: Marie-Pierre Audrezet, Jian-Min Chen, Odile Raguenes, Nadia Chuzhanova, Karine Giteau, Cedric Le Marechal, Isabelle Quere, David N. Cooper, and Claude Ferec INSERM U613, Genetique Moleculaire et Genetique Epidemiologique, Centre Hospitalier Universitaire, Brest, France; INSERM U613, Genetique Moleculaire et Genetique Epidemiologique, Universite de Bretagne Occidentale, and Etablissement Francais du Sang–Bretagne, Brest, France; Department of Computer Science, Cardiff University, Cardiff, UK; Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK

Journal ArticleDOI
TL;DR: The great genetic heterogeneity of the disease, the important phenotypic variability in HPE families, and the difficulty to establish genotype‐phenotype correlations are confirmed are confirmed.
Abstract: Holoprosencephaly (HPE; 1 out of 16,000 live births; 1 out of 250 conceptuses) is a complex brain malformation resulting from incomplete cleavage of the prosencephalon, affecting both the forebrain and the face. Clinical expressivity is variable, ranging from a single cerebral ventricle and cyclopia to clinically unaffected carriers in familial dominant autosomic HPE. The disease is genetically heterogeneous, but additional environmental agents also contribute to the etiology of HPE. In our cohort of 200 patients, 34 heterozygous mutations were identified, 24 of them being novel ones: 13 out of 17 in the Sonic hedgehog gene (SHH); 4 out of 7 in ZIC2; and 7 out of 8 in SIX3. The two mutations identified in TGIF have already been reported. Novel phenotypes associated with a mutation have been described, such as abnormalities of the pituitary gland and corpus callosum, colobomatous microphthalmia, choanal aperture stenosis, and isolated cleft lip. This study confirms the great genetic heterogeneity of the disease, the important phenotypic variability in HPE families, and the difficulty to establish genotype-phenotype correlations.

Journal ArticleDOI
TL;DR: This report analyzes data assembled in the Blood Group Antigen Gene Mutation Database and proposes that one group of these cSNPs, known to occur with significant frequency in all world populations, could serve as well‐validated genetic markers.
Abstract: In this report, we analyze data assembled in the Blood Group Antigen Gene Mutation Database (www.bioc.aecom.yu.edu/bgmut/index.htm), which describes sequence information on human genes associated with expression of the various serologically-determined blood group phenotypes. The database documents 38 genetic loci and a total of 624 alleles that together encode a large repertoire of proteins and constitute 27 serologically-defined blood group systems. Analysis of sequence variation patterns across alleles of a number of genes is focused on their molecular profiles, including mutational sites and recurrence, patterns of gene rearrangements in duplicated gene families, correlation of predicted location of epitopes in extracellular loops with sites of alterations, and effects of mutations on protein expression. That information, and the relative ease of identifying individuals bearing variant alleles, has led to the proposal that genes encoding blood group antigens are an important and unique resource for studies of human DNA variation. Another focus is on mutations in regions that encode the antigenic epitopes and on their occurrence in world populations. These mutations may be viewed as coding single nucleotide polymorphisms (cSNPs). We propose that one group of these cSNPs, which are known to occur with significant frequency in all world populations, could serve as well-validated genetic markers. In addition, specific mutations in a number of "low incidence" and rare alleles could serve as cSNPs specific for a given population. The allelic frequencies of these mutations and knowledge of their world-wide occurrence add a valuable dataset to the existing cSNP pools documented in SNP databases.

Journal ArticleDOI
TL;DR: The ModSNP database was set up to store information related to SAPs and to manage the modeling of SAPs onto protein structures via an automatic homology modeling pipeline, and the Swiss‐Prot Variant web pages were created to provide a summary of available sequence information, as well as additional structural information on each variant.
Abstract: Missense mutation leading to single amino acid polymorphism (SAP) is the type of mutation most frequently related to human diseases. The Swiss-Prot protein knowledgebase records information on such mutations in various sections of a protein entry, namely in the "feature," "comment," and "reference" fields. To facilitate users in obtaining the most relevant information about each human SAP recorded in the knowledgebase, the Swiss-Prot Variant web pages were created to provide a summary of available sequence information, as well as additional structural information on each variant. In particular, the ModSNP database was set up to store information related to SAPs and to manage the modeling of SAPs onto protein structures via an automatic homology modeling pipeline. Currently, among the 16,566 human SAPs recorded in the Swiss-Prot knowledgebase (release 42.5, 21 November 2003), more than 25% have corresponding 3D-models. Of these variants, 47% are related to disease, 26% are polymorphisms, and 27% are not yet clearly classified. The ModSNP database is updated and the subsequent model construction pipeline is launched with each weekly Swiss-Prot release. Thus, the ModSNP database represents a valuable resource for the structural analysis of protein variation. The Swiss-Prot variant pages are accessible from the NiceProt view of a Swiss-Prot entry on the ExPASy server (www.expasy.org/), via a hyperlink created for the stable and unique identifier FTId of each human SAP.

Journal ArticleDOI
TL;DR: This study demonstrates the reliability of DHPLC for RB1 analysis, but also illustrates the need for a deletion scanning approach, and recommends that RB1 testing should be widely implemented in routine healthcare because this study clearly illustrates its feasibility.
Abstract: Constitutional mutations of the RB1 gene are associated with a predisposition to retinoblastoma. It is essential to identify these mutations to provide appropriate genetic counseling in retinoblastoma patients, but this represents an extremely challenging task, as the vast majority of mutations are unique and spread over the entire coding sequence. Since 2001, we have implemented RB1 testing on a routine basis as part of the clinical management of retinoblastoma. As most screening techniques do not meet the requirements for efficient RB1 testing, we have devised a semi-automated denaturing high-performance liquid chromatography (DHPLC) method for point mutation detection combined with a quantitative multiplex PCR of short fluorescent fragments (QMPSF) approach to screen for gene rearrangements. We report the results of this comprehensive screening of all exons and promoter of RB1 in 192 unrelated patients, mostly of French origin. Among 102 bilateral and/or familial cases and 90 unilateral sporadic probands, mutations were identified in 83 (81.5%) and 5 (5.5%) cases, respectively. A total of 43 mutations have not been previously reported. The mutational spectrum was found to be significantly different from previous published series, displaying a surprising amount of splice mutations and large deletions. This study demonstrates the reliability of DHPLC for RB1 analysis, but also illustrates the need for a deletion scanning approach. Finally, considering the benefits to retinoblastoma patients, RB1 testing should be widely implemented in routine healthcare because our study clearly illustrates its feasibility.

Journal ArticleDOI
TL;DR: It is demonstrated by crystallography that the E64D mutation does not alter the structure of the DJ1 protein, however it is observed that there is a tendency towards decreased levels of the mutant protein when overexpressed in HEK293 or COS7 cells.
Abstract: Mutations in the parkin gene have been identified as a common cause of autosomal recessive inherited Parkinson disease (PD) associated with early disease manifestation. However, based on linkage data, mutations in other genes contribute to the genetic heterogeneity of early-onset PD (EOPD). Recently, two mutations in the DJ1 gene were described as a second cause of autosomal recessive EOPD (PARK7). Analyzing the PARK7/DJ1 gene in 104 EOPD patients, we identified a third mutation, c.192G>C (p.E64D), associated with EOPD in a patient of Turkish ancestry and characterized the functional significance of this amino acid substitution. In the patient, a substantial reduction of dopamine uptake transporter (DAT) binding was found in the striatum using [18F]FP-CIT and PET, indicating a serious loss of presynaptic dopaminergic afferents. His sister, homozygous for E64D, was clinically unaffected but showed reduced dopamine uptake when compared with a clinically unaffected brother, who is heterozygous for E64D. We demonstrate by crystallography that the E64D mutation does not alter the structure of the DJ1 protein, however we observe a tendency towards decreased levels of the mutant protein when overexpressed in HEK293 or COS7 cells. Using immunocytochemistry in contrast to the homogenous nuclear and cytoplasmic staining in HEK293 cells overexpressing wild-type DJ1, about 5% of the cells expressing E64D and up to 80% of the cells expressing the recently described L166P mutation displayed a predominant nuclear localization of the mutant DJ1 protein. Hum Mutat 24:321–329, 2004. © 2004 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: These data suggest that the vicinity of transposable elements influences the ongoing integration of mtDNA sequences and their subsequent duplication within the nDNA, and suggest that chromosomal structure might influence integration of NUMTs.
Abstract: Nuclear mitochondrial DNA sequences (NUMTs) are common in eukaryotes. However, the mechanism by which they integrate into the nuclear genome remains a riddle. We analyzed 247 NUMTs in the human nuclear DNA (nDNA), along with their flanking regions. This analysis revealed that some NUMTs have accumulated many changes, and thus have resided in the nucleus a long time, while others are >94% similar to the reference human mitochondrial DNA (mtDNA), and thus must be recent. Among the latter, two NUMTs, encompassing the COI gene, carry a set of transitions characteristic of the extant African-specific L macrohaplogroup mtDNAs and are more homologous to human mtDNA than to chimp. Screening for one of these NUMTs revealed its presence in all human samples tested, confirming that the African macrohaplogroup L mtDNAs were present in the earliest modern humans and thus were the first human mtDNAs. An analysis of flanking sequences of the NUMTs revealed that 59% were within 150 bp of repetitive elements, with 26% being within 15 bp of and 33% being within 15–150 bp of repetitive elements. Only 14% were integrated into a repetitive element. This association of NUMTs with repetitive elements is highly nonrandom (p<0.001). These data suggest that the vicinity of transposable elements influences the ongoing integration of mtDNA sequences and their subsequent duplication within the nDNA. Finally, NUMTs appear to preferentially integrate into DNA with different GC content than the surrounding chromosomal band. Our results suggest that chromosomal structure might influence integration of NUMTs. Hum Mutat 23:125–133, 2004. © 2003 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Results indicate that variants of ABCA1 may affect the risk of AD, providing further support for a genetic link between AD and cholesterol metabolism and ancillary evidence was obtained that both single marker alleles and haplotypes ofABCA1 contribute to variable cerebrospinal fluid tau and beta amyloid protein levels, and brain Aβ load.
Abstract: Linkage studies have provided evidence that one or more loci on chromosome 9q influence Alzheimer disease (AD) The gene encoding the ATP-binding cassette A1 transporter (ABCA1) resides within proximity of previously identified linkage peaks and represents a plausible biological candidate for AD due to its central role in cellular lipid homeostasis Several single nucleotide polymorphisms (SNPs) spanning ABCA1 have been genotyped and haplotype-based association analyses performed in four independent case-control samples, consisting of over 1,750 individuals from three European populations representing both early and late-onset AD Prominent effects were observed for a common (H2) and rarer haplotype (H5) that were enriched in AD cases across studied populations (odds ratio [OR] 159, 95% confidence interval [CI] 136-182; P<000001 and OR 290; 95% CI 254-327; P<000001, respectively) Two other common haplotypes in the studied region (H1 and H3) were significantly under-represented in AD cases, suggesting that they may harbor alleles that decrease disease risk (OR 079, 95% CI 064-094; P=00065 and OR 070, 95% CI 046-093; P=0011, respectively) While findings were significant in both early and late-onset samples, haplotype effects were more distinct in early-onset materials For late-onset samples, ancillary evidence was obtained that both single marker alleles and haplotypes of ABCA1 contribute to variable cerebrospinal fluid tau and beta amyloid (Abeta42) protein levels, and brain Abeta load Results indicate that variants of ABCA1 may affect the risk of AD, providing further support for a genetic link between AD and cholesterol metabolism

Journal ArticleDOI
TL;DR: For wild‐type PAH and all mild PKU mutants analyzed in this study, BH4 increases the PAH activity of the synthesized protein and protects from the rapid inactivation observed in vitro, indicating that the response to BH 4 substitution therapy by PKU mutations may have a multifactorial basis.
Abstract: A subtype of phenylalanine hydroxylase (PAH) deficiency that responds to cofactor (tetrahydrobiopterin, BH4) supplementation has been associated with phenylketonuria (PKU) mutations. The underlying molecular mechanism of this responsiveness is as yet unknown and requires a detailed in vitro expression analysis of the associated mutations. With this aim, we optimized the analysis of the kinetic and cofactor binding properties in recombinant human PAH and in seven mild PKU mutations, i.e., c.194T>C (p.I65T), c.204A>T (p.R68S), c.731C>T (p.P244L), c.782G>A (p.R261Q), c.926C>T (p.A309V), c.1162G>A (p.V388M), and c.1162G>A (p.Y414C) expressed in E. coli. For p.I65T, p.R68S, and p.R261Q, we could in addition study the equilibrium binding of BH4 to the tetrameric forms by isothermal titration calorimetry (ITC). All the mutations resulted in catalytic defects, and p.I65T, p.R68S, p.P244L, and most probably p.A309V, showed reduced binding affinity for BH4. The possible stabilizing effect of the cofactor was explored using a cell-free in vitro synthesis assay combined with pulse-chase methodology. BH4 prevents the degradation of the proteins of folding variants p.A309V, p.V388M, and p.Y414C, acting as a chemical chaperone. In addition, for wild-type PAH and all mild PKU mutants analyzed in this study, BH4 increases the PAH activity of the synthesized protein and protects from the rapid inactivation observed in vitro. Catalase and superoxide dismutase partially mimic this protection. All together, our results indicate that the response to BH4 substitution therapy by PKU mutations may have a multifactorial basis. Both effects of BH4 on PAH, i.e., the chemical chaperone effect preventing protein misfolding and the protection from inactivation, may be relevant mechanisms of the responsive phenotype.

Journal ArticleDOI
TL;DR: The study of nine Y‐STR loci has demonstrated the necessity of not only locus‐ specific, but even allele‐specific, mutation rate estimates for forensic and population genetic purposes, and provides a considerable basis for such estimates.
Abstract: Precise estimates of mutation rates at Y-chromosomal microsatellite STR (short tandem repeat) loci make an important basis for paternity diagnostics and dating of Y chromosome lineage origins. There are indications of considerable locus mutation rate variability between (inter-) and within (intra-) loci. We have studied nine Y-STR loci-DYS19, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS385, and DYS388-in 1,766 father-son pairs of confirmed paternity (a total of 15,894 meioses). Five biallelic markers were also analyzed in the fathers-Tat, YAP, 12f2, SRY1532, and 92R7-defining haplogroups 1, 2, 3, 4, 9, and 16, respectively. A total of 36 fragment length mutations were observed: 24 gains (22 single-step, two double-step) and 12 single-step losses. Thus, there was a significant surplus of gains (p=0.045). Overall, the mutation rate was positively correlated to STR repeat length and there was a significant relative excess of losses in long alleles and gains in short alleles (p=0.043). In contrast to the situation in autosomal STR loci and in MSY-1, no noteworthy correlation between mutation rate and the father's age at the child's birth was observed. We observed significant interlocus differences in Y-STR mutation rates (p<0.01). The number of observed mutations ranged from zero in DYS392 to eight in DYS391 and DYS390. We have also demonstrated obvious differences in mutation rates between the haplogroups studied (p=0.024), a phenomenon that is a reflection of the dependence of mutation rate on allele size. Our study has thus demonstrated the necessity of not only locus-specific, but even allele-specific, mutation rate estimates for forensic and population genetic purposes, and provides a considerable basis for such estimates.

Journal ArticleDOI
TL;DR: Hereditary hemmorrhagic telangiectasia is an autosomal dominant disease characterized by arteriovenous malformations, affecting 1 out of 10,000 individuals in France, and coding sequence screening in 160 unrelated French index cases suggested a founder effect and a mutation hot‐spot.
Abstract: Hereditary hemmorrhagic telangiectasia (HHT, or Osler-Rendu-Weber syndrome) is an autosomal dominant disease characterized by arteriovenous malformations, affecting 1 out of 10,000 individuals in France. The disease is caused by mutations of two genes: ENG and ALK1 (ACVRL1). We screened the coding sequence of ENG and ALK1 in 160 unrelated French index cases. A germline mutation was identified in 100 individuals (62.5%). A total of 36 mutations were found in ENG, including three nonsense mutations, 19 small insertions/deletions leading to a frameshift, two inframe deletions, seven missense mutations, and five intronic or splice-site mutations. Of the 36 mutations, 33 were novel mutations. A total of 64 mutations were found in ALK1, including six nonsense mutations, 28 small insertions/deletions leading to a frameshift, one inframe deletion, 27 missense mutations, and two intronic or splice-site mutations. Of the 64 mutations, 27 were novel mutations. Mutations were found in most parts of the coding sequence for both genes, except ALK1 exon 5 and ENG exons 12 to 14. Missense mutations in ALK1 were more frequent in exons 7, 8, and 10. ENG cDNA was sequenced for three intronic mutations: c.689+2T>C produced an abnormal transcript excluding exon 5, c.1103+3_1103+8del activated a cryptic splice site 22 bp upstream, and c.1428G>A produced two abnormal transcripts, one including intron 11 and the other excluding exon 10. Although most of the mutations were private, some recurrent mutations in ALK1 were of particular interest. Mutation c.1112_1113dupG (p.Gly371fsX391) was found in 17 unrelated individuals sharing a common haplotype, strongly suggesting a founder effect related to the concentration of patients previously reported in a specific French region (Rhone-Alpes). Three missense mutations involved the same codon: c.1231C>T (p.Arg411Trp), c.1232G>C (p.Arg411Pro), and c.1232G>A (p.Arg411Gln) were found in seven, two, and one patients, respectively. Haplotype analysis was in favor of both a founder effect and a mutation hot-spot.

Journal ArticleDOI
TL;DR: The mutation frequencies of PMP22 and MPZ were similar to those found in several European populations, however, it appeared that mutations in GJB1 are less frequent in East Asian CMT patients than in Eur opean patients.
Abstract: We examined CMT1A duplication of 17p11.2-p12, mutations of PMP22, MPZ (P0), GJB1 (Cx32), EGR2 and NEFL genes in 57 Korean families with patients diagnosed as having Charcot-Marie-Tooth (CMT) disease. The CMT1A duplication was present in 53.6% of 28 CMT type 1 patients. In the 42 CMT families without CMT1A duplication, 10 pathogenic mutations were found in 9 families. The 10 mutations were not detected in 105 healthy controls. Seven mutations (c.318delT (p.Ala106fs) in PMP22, c.352G>A (p.Asp118Asn), c.449-1G>T (3′-splice site), c.706A>G (p.Lys236Glu) in MPZ, c.408T>C (p.Val136Ala), c.502T>C (p.Cys168Arg) in GJB1, and c.1001T>C (p.Leu334Pro) in NEFL) were determined to be novel. The mutation frequencies of PMP22 and MPZ were similar to those found in several European populations, however, it appeared that mutations in GJB1 are less frequent in East Asian CMT patients than in Eur opean patients. We described the identified mutations and phenotype-genotype correlations based on nerve conduction studies. © 2004 Wiley-Liss, Inc.