scispace - formally typeset
Search or ask a question

Showing papers by "Kotb Abdelmohsen published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors used ribonucleoprotein immunoprecipitation (RIP) analysis to identify systematically the circRNAs associated with the cancer-related protein AUF1.
Abstract: Mammalian circRNAs can influence different cellular processes by interacting with proteins and other nucleic acids. Here, we used ribonucleoprotein immunoprecipitation (RIP) analysis to identify systematically the circRNAs associated with the cancer-related protein AUF1. Among the circRNAs interacting with AUF1 in HeLa (human cervical carcinoma) cells, we focused on hsa_circ_0032434 (circPCNX), an abundant target of AUF1. Overexpression of circPCNX specifically interfered with the binding of AUF1 to p21 (CDKN1A) mRNA, thereby promoting p21 mRNA stability and elevating the production of p21, a major inhibitor of cell proliferation. Conversely, silencing circPCNX increased AUF1 binding to p21 mRNA, reducing p21 production and promoting cell division. Importantly, eliminating the AUF1-binding region of circPCNX abrogated the rise in p21 levels and rescued proliferation. Therefore, we propose that the interaction of circPCNX with AUF1 selectively prevents AUF1 binding to p21 mRNA, leading to enhanced p21 mRNA stability and p21 protein production, thereby suppressing cell growth.

47 citations


Journal ArticleDOI
09 Jul 2021-Cells
TL;DR: In this article, the authors summarize the recent knowledge regarding senolysis with a focus on novel surface biomarkers of cellular senescence and discuss their emergence as senotherapeutic targets.
Abstract: Senescence is linked to a wide range of age-associated diseases and physiological declines. Thus, senotherapeutics are emerging to suppress the detrimental effects of senescence either by senomorphics or senolytics. Senomorphics suppress the traits associated with senescence phenotypes, while senolytics aim to clear senescent cells by suppressing their survival and enhancing the apoptotic pathways. The main goal of these approaches is to suppress the proinflammatory senescence-associated secretory phenotype (SASP) and to promote the immune recognition and elimination of senescent cells. One increasingly attractive approach is the targeting of molecules or proteins specifically present on the surface of senescent cells. These proteins may play roles in the maintenance and survival of senescent cells and hence can be targeted for senolysis. In this review, we summarize the recent knowledge regarding senolysis with a focus on novel surface biomarkers of cellular senescence and discuss their emergence as senotherapeutic targets.

19 citations


Posted ContentDOI
23 Apr 2021
TL;DR: It is proposed that inhibiting SRC could be exploited to induce senescent-cell apoptosis in tissues to improve health outcomes.
Abstract: Cells responding to DNA damage implement complex adaptive programs that often culminate in two distinct outcomes: apoptosis or senescence. To systematically identify factors driving each response, we analyzed human IMR-90 fibroblasts exposed to increasing doses of the genotoxin etoposide and identified SRC as a key kinase contributing to this dichotomous decision. SRC was activated by low (50 μM) etoposide but not by high (200 μM) etoposide levels. With low DNA damage, SRC-mediated activation of p38 critically promoted cell survival and senescence, and increased pro-survival BCL2L2 levels, while SRC-mediated repression of p53 prevented a rise in pro-apoptotic PUMA levels. With high DNA damage, SRC was not activated, leading to elevation of p53, inhibition of p38, and apoptosis. In mice exposed to DNA damage, pharmacologic inhibition of SRC prevented tissue accumulation of senescent cells. We propose that inhibiting SRC could be exploited to induce senescent-cell apoptosis in tissues to improve health outcomes.

13 citations


Journal ArticleDOI
08 Jun 2021
TL;DR: In this article, the acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, was identified as being highly elevated in senescent cells.
Abstract: Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.

10 citations


Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper identified miR-340-5p as a novel miRNA that foments cellular senescence, which can be exploited for removing senescent cells to restore tissue homeostasis.
Abstract: A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging.

8 citations