scispace - formally typeset
Search or ask a question

Showing papers by "Lance D. Miller published in 2012"


Journal ArticleDOI
TL;DR: Examination of the role of cyclin E2 in antiestrogen resistance in vitro and its potential for therapeutic targeting through cyclin-dependent kinase (CDK) inhibition found it to hold promise as a component of combination therapies in endocrine-resistant disease.
Abstract: Cyclin E2, but not cyclin E1, is included in several gene signatures that predict disease progression in either tamoxifen-resistant or metastatic breast cancer. We therefore examined the role of cyclin E2 in antiestrogen resistance in vitro and its potential for therapeutic targeting through cyclin-dependent kinase (CDK) inhibition. High expression of CCNE2, but not CCNE1, was characteristic of the luminal B and HER2 subtypes of breast cancer and was strongly predictive of shorter distant metastasis-free survival following endocrine therapy. After antiestrogen treatment of MCF-7 breast cancer cells, cyclin E2 mRNA and protein were downregulated and cyclin E2–CDK2 activity decreased. However, this regulation was lost in tamoxifen-resistant (MCF-7 TAMR) cells, which overexpressed cyclin E2. Expression of either cyclin E1 or E2 in T-47D breast cancer cells conferred acute antiestrogen resistance, suggesting that cyclin E overexpression contributes to the antiestrogen resistance of tamoxifen-resistant cells. Ectopic expression of cyclin E1 or E2 also reduced sensitivity to CDK4, but not CDK2, inhibition. Proliferation of tamoxifen-resistant cells was inhibited by RNAi-mediated knockdown of cyclin E1, cyclin E2, or CDK2. Furthermore, CDK2 inhibition of E-cyclin overexpressing cells and tamoxifen-resistant cells restored sensitivity to tamoxifen or CDK4 inhibition. Cyclin E2 overexpression is therefore a potential mechanism of resistance to both endocrine therapy and CDK4 inhibition. CDK2 inhibitors hold promise as a component of combination therapies in endocrine-resistant disease as they effectively inhibit cyclin E1 and E2 overexpressing cells and enhance the efficacy of other therapeutics.

135 citations



Journal ArticleDOI
TL;DR: YB-1 expression is associated with the activity of E2F transcription factors and may control tumor cell growth by this mechanism and was strongly associated with poor disease-free survival and distant metastasis- free survival.
Abstract: BACKGROUND Y-box binding factor 1 (YB-1) has been associated with prognosis in many tumor types. Reduced YB-1 expression inhibits tumor cell growth, but the mechanism is unclear. METHODS YB-1 mRNA levels were compared with tumor grade and histology using microarray data from 771 breast cancer patients and with disease-free survival and distant metastasis-free survival using data from 375 of those patients who did not receive adjuvant therapy. Microarrays were further searched for genes that had correlated expression with YB-1 mRNA. Small interfering RNA (siRNA) was used to study the effects of reduced YB-1 expression on growth of three tumor cell lines (MCF-7 breast, HCT116 colon, and A549 lung cancer cells), on tumorigenesis by A549 cells in nude mice, and on global transcription in the three cancer cell lines. Reporter gene assays were used to determine whether YB-1 siRNAs affected the expression of E2F1, and chromatin immunoprecipitation was used to determine whether YB-1 bound to various E2F promoters as well as E2F1-regulated promoters. All P values were from two-sided tests. RESULTS YB-1 levels were elevated in more aggressive tumors and were strongly associated with poor disease-free survival and distant metastasis-free survival. YB-1 expression was often associated with the expression of genes with E2F sites in their promoters. Cells expressing YB-1 siRNA grew substantially more slowly than control cells and formed tumors less readily in nude mice. Transcripts that were altered in cancer cell lines with YB-1 siRNA included 32 genes that are components of prognostic gene expression signatures. YB-1 regulated expression of an E2F1 promoter-reporter construct in A549 cells (eg, relative E2F1 promoter activity with control siRNA = 4.04; with YB-1 siRNA = 1.40, difference= -2.64, 95% confidence interval = -3.57 to -1.71, P < .001) and bound to the promoters of several well-defined E2F1 target genes. CONCLUSION YB-1 expression is associated with the activity of E2F transcription factors and may control tumor cell growth by this mechanism.

106 citations


Journal ArticleDOI
TL;DR: Jumonji Domain Containing 6 (JMJD6) protein was expressed at highest levels in tumors associated with worse outcomes, including ER- and basal-like, Claudin-low, Her2-enriched, and ER+ Luminal B tumors, suggesting that JMJD6 may affect similar pathways in primary breast cancer.
Abstract: We developed an analytic strategy that correlates gene expression and clinical outcomes as a means to identify novel candidate oncogenes operative in breast cancer. This analysis, followed by functional characterization, resulted in the identification of Jumonji Domain Containing 6 (JMJD6) protein as a novel driver of oncogenic properties in breast cancer. Through microarray informatics, Cox proportional hazards regression was used to analyze the correlation between gene expression and distant metastasis-free survival (DMFS) of patients in 14 independent breast cancer cohorts. JMJD6 emerged as a top candidate gene robustly associated with poor patient survival. Immunohistochemistry, siRNA-mediated silencing, and forced overexpression of JMJD6 in cell-based assays elucidated molecular mechanisms of JMJD6 action in breast cancer progression and shed light on the clinical breast cancer subtypes relevant to JMJD6 action. JMJD6 was expressed at highest levels in tumors associated with worse outcomes, including ER- and basal-like, Claudin-low, Her2-enriched, and ER+ Luminal B tumors. High nuclear JMJD6 protein was associated with ER negativity, advanced grade, and poor differentiation in tissue microarrays. Separation of ER+/LN- patients that received endocrine monotherapy indicated that JMJD6 is predictive of poor outcome in treatment-specific subgroups. In breast cancer cell lines, loss of JMJD6 consistently resulted in suppressed proliferation but not apoptosis, whereas forced stable overexpression increased growth. In addition, knockdown of JMJD6 in invasive cell lines, such as MDA-MB231, decreased motility and invasion, whereas overexpression in MCF-7 cells slightly promoted motility but did not confer invasive growth. Microarray analysis showed that the most significant transcriptional changes occurred in cell-proliferation genes and genes of the TGF-β tumor-suppressor pathway. High proliferation was characterized by constitutively high cyclin E protein levels. The inverse relation of JMJD6 expression with TGF-β 2 could be extrapolated to the breast cancer cohorts, suggesting that JMJD6 may affect similar pathways in primary breast cancer. JMJD6 is a novel biomarker of tumor aggressiveness with functional implications in breast cancer growth and migration.

92 citations


Journal ArticleDOI
TL;DR: Strong evidence is provided showing the presence of G4 structures in the promoter and the 5′-UTR of YY1, and the analysis of a gene array data consisting of the breast cancer samples of 258 patients indicates a significant, positive correlation between G4R1 and YY 1 expression.
Abstract: Yin Yang 1 (YY1) is a multifunctional protein with regulatory potential in tumorigenesis. Ample studies demonstrated the activities of YY1 in regulating gene expression and mediating differential protein modifications. However, the mechanisms underlying YY1 gene expression are relatively understudied. G-quadruplexes (G4s) are four-stranded structures or motifs formed by guanine-rich DNA or RNA domains. The presence of G4 structures in a gene promoter or the 5′-UTR of its mRNA can markedly affect its expression. In this report, we provide strong evidence showing the presence of G4 structures in the promoter and the 5′-UTR of YY1. In reporter assays, mutations in these G4 structure forming sequences increased the expression of Gaussia luciferase (Gluc) downstream of either YY1 promoter or 5′-UTR. We also discovered that G4 Resolvase 1 (G4R1) enhanced the Gluc expression mediated by the YY1 promoter, but not the YY1 5′-UTR. Consistently, G4R1 binds the G4 motif of the YY1 promoter in vitro and ectopically expressed G4R1 increased endogenous YY1 levels. In addition, the analysis of a gene array data consisting of the breast cancer samples of 258 patients also indicates a significant, positive correlation between G4R1 and YY1 expression.

90 citations


Journal ArticleDOI
TL;DR: The data suggest that YY1 is an oncogene and identify p27 as a new target of YY2, and an inverse correlation between Yy1 and p27 expression in both breast cancer cells and xenograft tumors with manipulated YY 1 expression is detected.
Abstract: Yin Yang 1 (YY1) is highly expressed in various types of cancers and regulates tumorigenesis through multiple pathways In the present study, we evaluated YY1 expression levels in breast cancer cell lines, a breast cancer TMA, and two gene arrays We observed that, compared with normal samples, YY1 is generally overexpressed in breast cancer cells and tissues In functional studies, depletion of YY1 inhibited the clonogenicity, migration, invasion, and tumor formation of breast cancer cells, but did not affect the clonogenicity of nontumorigenic cells Conversely, ectopically expressed YY1 enhanced the migration and invasion of nontumorigenic MCF-10A breast cells In both a monolayer culture condition and a three-dimensional Matrigel system, silenced YY1 expression changed the architecture of breast cancer MCF-7 cells to that resembling MCF-10A cells, whereas ectopically expressed YY1 in MCF-10A cells had the opposite effect Furthermore, we detected an inverse correlation between YY1 and p27 expression in both breast cancer cells and xenograft tumors with manipulated YY1 expression Counteracting the changes in p27 expression attenuated the effects of YY1 alterations on these cells In addition, YY1 promoted p27 ubiquitination and physically interacted with p27 In conclusion, our data suggest that YY1 is an oncogene and identify p27 as a new target of YY1

83 citations


Journal ArticleDOI
TL;DR: The current understanding of the potential role of different RAS mutations on tumorigenesis is reviewed, studies in model cell culture and in vivo systems are highlighted, and the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype is discussed.
Abstract: Mutation in RAS proteins is one of the most common genetic alterations observed in human and experimentally induced rodent cancers. In vivo, oncogenic mutations have been shown to occur at exons 12, 13, and 61, resulting in any one of 19 possible point mutations in a given tumor for a specific RAS isoform. While some studies have suggested a possible role of allele-specific mutation in determining tumor severity and phenotype, no general consensus has emerged on the oncogenicity of different mutant alleles in tumor formation and progression. Part of this may be due to a lack of a single, signature pathway that shows significant alterations between different mutations. Rather, it is likely that subtle differences in the activation, or lack thereof, of downstream effectors by different RAS mutant alleles may determine the eventual outcome in terms of tumor phenotype. This paper reviews our current understanding of the potential role of different RAS mutations on tumorigenesis, highlights studies in model cell culture and in vivo systems, and discusses the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype.

61 citations


Journal ArticleDOI
TL;DR: Data show that a number of unique approaches can be taken to address anesthesia-induced neurotoxicity in the infant brain, thus providing MDs with a variety of alternative strategies that enhance therapeutic flexibility.

42 citations