scispace - formally typeset
Search or ask a question

Showing papers by "Lin Huang published in 2007"


Journal ArticleDOI
TL;DR: In this paper, the authors conducted a comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies.
Abstract: Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment, and atmosphere). This is the first comprehensive intercomparison of this type (multimethod, multilab, and multisample), focusing mainly on methods used for soil and sediment BC studies. Results for the potentially interfering materials (which by definition contained no fire-derived organic carbon) highlighted situations where individual methods may overestimate BC concentrations. Results for the BC-rich materials (one soot and two chars) showed that some of the methods identified most of the carbon in all three materials as BC, whereas other methods identified only soot carbon as BC. The different methods also gave widely different BC contents for the environmental matrices. However, these variations could be understood in the light of the findings for the other two groups of materials, i.e., that some methods incorrectly identify non-BC carbon as BC, and that the detection efficiency of each technique varies across the BC continuum. We found that atmospheric BC quantification methods are not ideal for soil and sediment studies as in their methodology these incorporate the definition of BC as light-absorbing material irrespective of its origin, leading to biases when applied to terrestrial and sedimentary materials. This study shows that any attempt to merge data generated via different methods must consider the different, operationally defined analytical windows of the BC continuum detected by each technique, as well as the limitations and potential biases of each technique. A major goal of this ring trial was to provide a basis on which to choose between the different BC quantification methods in soil and sediment studies. In this paper we summarize the advantages and disadvantages of each method. In future studies, we strongly recommend the evaluation of all methods analyzing for BC in soils and sediments against the set of BC reference materials analyzed here.

769 citations


Journal ArticleDOI
TL;DR: The carbon kinetic isotope effects (KIEs) of the reactions of several light non-methane hydrocarbons (NMHC) with Cl atoms were determined at room temperature and ambient pressure and the Clepsilon values presented here for the C2-C8 alkanes are an order of magnitude smaller than reported methane Clepsilus values.
Abstract: The carbon kinetic isotope effects (KIEs) of the reactions of several light non-methane hydrocarbons (NMHC) with Cl atoms were determined at room temperature and ambient pressure. All measured KIEs, defined as the ratio of the Cl reaction rate constants of the light isotopologue over that of the heavy isotopologue (Clk12/Clk13) are greater than unity or normal KIEs. For simplicity, measured KIEs are reported in per mil according to Cle = (Clk12/Clk13 −1) × 1000‰ unless noted otherwise. The following average KIEs were obtained (all in ‰): 10.73 ± 0.20 (ethane), 6.44 ± 0.14 (propane), 6.18 ± 0.18 (methylpropane), 3.94 ± 0.01 (n-butane), 1.79 ± 0.42 (methylbutane), 3.22 ± 0.17 (n-pentane), 2.02 ± 0.40 (n-hexane), 2.06 ± 0.19 (n-heptane), 1.54 ± 0.15 (n-octane), 3.04 ± 0.09 (cyclopentane), 2.30 ± 0.09 (cyclohexane), and 2.56 ± 0.25 (methylcyclopentane). Measurements of the 12C/13C KIEs for the Cl atom reactions of the C2−C8 n-alkanes were also made at 348 K, and no significant temperature dependence was obse...

27 citations


Journal ArticleDOI
TL;DR: In this article, the carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS).
Abstract: The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.

13 citations