scispace - formally typeset
Search or ask a question

Showing papers by "Lyudmila Georgieva published in 2010"


Journal ArticleDOI
TL;DR: Although convergent lines of evidence implicating both rare and common schizophrenia risk variants at PRKCA are obtained, none of these is individually compelling and suggests that further study of this locus is warranted.
Abstract: We earlier reported a genome-wide significant linkage to schizophrenia at chromosome 17 that was identified in a single pedigree (C702) consisting of six affected, male siblings with DSM-IV schizophrenia and prominent mood symptoms. In this study, we adopted several approaches in an attempt to map the putative disease locus. First, mapping the source of linkage to chromosome 17 in pedigree C702. We refined the linkage region in family C702 to a 21-marker segment spanning 11.7 Mb at 17q23–q24 by genotyping a total of 50 microsatellites across chromosome 17 in the pedigree. Analysis of data from 1028 single nucleotide polymorphisms (SNPs) across the refined linkage region identified a single region of homozygosity present in pedigree C702 but not in 2938 UK controls. This spanned ~432 kb of the gene encoding protein kinase C, alpha (PRKCA), the encoded protein of which has been implicated in the pathogenesis of psychiatric disorders. Analysis of pedigree C702 by oligonucleotide-array comparative genome hybridization excluded the possibility that this region of homozygosity was because of a deletion. Mutation screening of PRKCA identified a rare, four-marker haplotype (C-HAP) in the 3′ untranslated region of the gene, which was present in the homozygous state in all six affected members of pedigree C702. No other homozygotes were observed in genotype data for a total of 6597 unrelated Europeans (case N=1755, control N=3580 and parents of probands N=1262). Second, association analysis of C702 alleles at PRKCA. The low-frequency haplotype (C-HAP) showed a trend for association in a study of unrelated schizophrenia cases and controls from the UK (661 cases, 2824 controls, P=0.078 and odd ratio (OR)=1.9) and significant evidence for association when the sample was expanded to include cases with bipolar (N=710) and schizoaffective disorder (N=50) (psychosis sample: 1421 cases, 2824 controls, P=0.037 and OR=1.9). Given that all the affected members of C702 are male, we also undertook sex-specific analyses. This revealed that the association was strongest in males for both schizophrenia (446 male cases, 1421 male controls, P=0.008 and OR=3.9) and in the broader psychosis group (730 male cases, 1421 male controls, P=0.008 and OR=3.6). Analysis of C-HAP in follow-up samples from Ireland and Bulgaria revealed no evidence for association in either the whole sample or in males alone, and meta-analysis of all male psychosis samples yielded no significant evidence of association (969 male cases, 1939 male controls, 311 male probands P=0.304 and OR=1.4). Third, association mapping of the pedigree C702 linkage region. Independent of pedigree C702, genotype data from the Affymetrix 500k GeneChip set were available for 476 patients with schizophrenia and 2938 controls from the United Kingdom. SNPs in PRKCA showed evidence for association with schizophrenia that achieved gene-wide significance (P=0.027). Moreover, the same SNP was the most significantly associated marker out of the 1028 SNPs genotyped across the linkage region (rs873417, allelic P=0.0004). Follow-up genotyping in samples from Ireland, Bulgaria and Germany did not show consistent replication, but meta-analysis of all samples (4116 cases and 6491 controls) remained nominally significant (meta-analysis P=0.026, OR=1.1). We conclude that, although we have obtained convergent lines of evidence implicating both rare and common schizophrenia risk variants at PRKCA, none of these is individually compelling. However, the evidence across all approaches suggests that further study of this locus is warranted.

33 citations


Journal ArticleDOI
TL;DR: Alternative splicing of E3b is confirmed in post‐mortem human substantia nigra (SN) and does not provide a compelling link to schizophrenia, however, the impact of the alternative splicing on other neuropsychiatric disorders should be investigated.
Abstract: The dopamine transporter gene (SLC6A3, DAT) has been implicated in the pathogenesis of numerous psychiatric and neurodevelopmental disorders, including schizophrenia (SZ). We previously detected association between SZ and intronic SLC6A3 variants that replicated in two independent Caucasian samples, but had no obvious function. In follow-up analyses, we sequenced the coding and intronic regions of SLC6A3 to identify complete linkage disequilibrium patterns of common variations. We genotyped 78 polymorphisms, narrowing the potentially causal region to two correlated clusters of associated SNPs localized predominantly to introns 3 and 4. Our computational analysis of these intronic regions predicted a novel cassette exon within intron 3, designated E3b, which is conserved among primates. We confirmed alternative splicing of E3b in post-mortem human substantia nigra (SN). As E3b introduces multiple in-frame stop codons, the SLC6A3 open reading frame is truncated and the spliced product may undergo nonsense mediated decay. Thus, factors that increase E3b splicing could reduce the amount of unspliced product available for translation. Observations consistent with this prediction were made using cellular assays and in post-mortem human SN. In mini-gene constructs, the extent of splicing is also influenced by at least two common haplotypes, so the alternative splicing was evaluated in relation to SZ risk. Meta-analyses across genome-wide association studies did not support the initial associations and further post-mortem studies did not suggest case-control differences in splicing. These studies do not provide a compelling link to schizophrenia. However, the impact of the alternative splicing on other neuropsychiatric disorders should be investigated. © 2010 Wiley-Liss, Inc.

18 citations