scispace - formally typeset
M

Michael E. Talkowski

Researcher at Harvard University

Publications -  207
Citations -  21245

Michael E. Talkowski is an academic researcher from Harvard University. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 45, co-authored 172 publications receiving 13623 citations. Previous affiliations of Michael E. Talkowski include University of Pittsburgh & Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI

The mutational constraint spectrum quantified from variation in 141,456 humans

TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Journal ArticleDOI

Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci.

TL;DR: Analysis of de novo CNVs from the full Simons Simplex Collection replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci, including 6 CNV regions.
Journal ArticleDOI

Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism

F. Kyle Satterstrom, +201 more
- 06 Feb 2020 - 
TL;DR: The largest exome sequencing study of autism spectrum disorder (ASD) to date, using an enhanced analytical framework to integrate de novo and case-control rare variation, identifies 102 risk genes at a false discovery rate of 0.1 or less, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.
Posted ContentDOI

Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes

Konrad J. Karczewski, +95 more
- 30 Jan 2019 - 
TL;DR: Using an improved human mutation rate model, human protein-coding genes are classified along a spectrum representing tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.
Journal ArticleDOI

Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

Phil Lee, +606 more
- 12 Dec 2019 - 
TL;DR: Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes.