scispace - formally typeset
Search or ask a question

Showing papers by "Maria A. F. Faustino published in 2010"


Journal ArticleDOI
TL;DR: The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process.
Abstract: Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py(+)-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py(+)-Me-PF (5.0 microM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m(-2)) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 microM of Tri-Py(+)-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py(+)-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process.

351 citations


Journal ArticleDOI
19 Nov 2010-ACS Nano
TL;DR: These new multicharged nanomagnet-porphyrin hybrids are very stable in water and highly effective in the photoinactivation of bacteria and phages and makes these materials novel photosensitizers for water or wastewater disinfection.
Abstract: Cationic nanomagnet-porphyrin hybrids were synthesized and their photodynamic therapy capabilities were investigated against the Gram (-) Escherichia coli bacteria, the Gram (+) Enterococcus faecalis bacteria and T4-like phage. The synthesis, structural characterization, photophysical properties, and antimicrobial activity of these new materials are discussed. The results show that these new multicharged nanomagnet-porphyrin hybrids are very stable in water and highly effective in the photoinactivation of bacteria and phages. Their remarkable antimicrobial activity, associated with their easy recovery, just by applying a magnetic field, makes these materials novel photosensitizers for water or wastewater disinfection.

108 citations


Journal ArticleDOI
TL;DR: The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied.
Abstract: Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m(-2)), sun light (600 W m(-2)) and an halogen lamp (40-1690 W m(-2)). Phage suspensions and two cationic photosensitizers (Tetra-Py(+)-Me, Tri-Py(+)-Me-PF) at concentrations of 0.5, 1.0 and 5.0 microM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 microM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol.

73 citations