scispace - formally typeset
Search or ask a question
Institution

University of Aveiro

EducationAveiro, Portugal
About: University of Aveiro is a education organization based out in Aveiro, Portugal. It is known for research contribution in the topics: Population & Dielectric. The organization has 9740 authors who have published 34864 publications receiving 738177 citations.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, a new solution for the astronomical computation of the insolation quantities on Earth spanning from −250 m to 250 m was presented, where the most regular components of the orbital solution could still be used over a much longer time span, which is why they provided here the solution over 250 m.
Abstract: We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. [CITE]) by using a direct integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular in the evolution of the Earth–Moon System. The orbital solution has been used for the calibration of the Neogene period (Lourens et al. [CITE]), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a precise determination of the Earth's motion. However, the most regular components of the orbital solution could still be used over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of about 0.38 degree in the next few millions of years, due to the crossing of the resonance (Laskar et al. [CITE]). For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the eccentricity, related to , with a fixed frequency of /yr, corresponding to a period of 405 000 yr. The uncertainty of this time scale over 100 Myr should be about , and over the full Mesozoic era.

2,992 citations

Journal ArticleDOI
TL;DR: A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolations, phenomena near epidemic thresholds, condensation transitions,critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned.
Abstract: The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, important steps have been made toward understanding the qualitatively new critical phenomena in complex networks. The results, concepts, and methods of this rapidly developing field are reviewed. Two closely related classes of these critical phenomena are considered, namely, structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. Systems where a network and interacting agents on it influence each other are also discussed. A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned. Strong finite-size effects in these systems and open problems and perspectives are also discussed.

1,996 citations

Journal ArticleDOI
TL;DR: The most important members of the hexaferrite family are shown below, where Me = a small 2+ ion such as cobalt, nickel, or zinc, and Ba can be substituted by Sr: • M-type ferrites, such as BaFe12O19 (BaM or barium ferrite), SrFe 12O19(SrM or strontium ferite), and cobalt-titanium substituted M ferrite, Sr- or BaFe 12−2xCoxTixO19, or CoTiM as discussed by the authors.

1,855 citations

Journal ArticleDOI
TL;DR: In this paper, a statistical meta-analysis was performed with the aim of evaluating the relationship between biochar and crop productivity (either yield or above-ground biomass) with an overall small, but statistically significant, benefit of biochar application to soils on crop productivity, with a grand mean increase of 10%.

1,762 citations


Authors

Showing all 10002 results

NameH-indexPapersCitations
Michael W. Anderson10180863603
José A. Teixeira101141447329
João F. Mano9782236401
João A. P. Coutinho9481034243
João Rocha93152149472
Yung-Eun Sung7956423618
Mário G.S. Ferreira7834619271
Jose C. Principe77110530125
Paul D. Beer7654427398
Félix Carvalho7648641974
Luís D. Carlos7554422063
Jens Wiltfang7553825886
Jonathan M. Borwein7461226344
Isabel M. Marrucho7327017100
Joel J. P. C. Rodrigues72100022175
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Ghent University
111K papers, 3.7M citations

92% related

National Research Council
76K papers, 2.4M citations

92% related

Spanish National Research Council
220.4K papers, 7.6M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202379
2022412
20212,770
20202,726
20192,578
20182,410